• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria espacial

Geometria espacial

Mensagempor Rosana Vieira » Sex Fev 17, 2012 10:17

Luiz Aquino
Olá será que vc pode me ajudar a resolver este exercício, pois não conseguir colar a figura e estou como muita dúvida
1)O uso de malhas quadriculadas contribui sobremaneira para a investigação de áreas de figuras, inclusive as mais complexas.
a) Com auxílio de malhas quadriculadas encontre uma aproximação razoável para a área de um círculo de raio igual a 6 cm. Determine qual foi a aproximação (%) obtida.
b) Faça o mesmo para encontrar uma aproximação para a área da região plana limitada pela elipse da figura abaixo, cuja equação reduzida é: , x e y reais, é x2/36 + y2/16 = 1, x e y reais, -6menor igual x menor igual 6 e - 4menor igual y menor igual 4.
(Lembramos que a área da região plana limitada por uma elipse com semi-eixos a e b é obtida pelo produto . Veja que, neste caso, a = 6 e b = 4).
Rosana Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 74
Registrado em: Qui Nov 17, 2011 00:11
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Geometria espacial

Mensagempor LuizAquino » Sex Fev 17, 2012 10:58

Prezada Rosana Vieira,

Por favor, não poste o mesmo exercício em tópicos diferentes. Isso faz com que o fórum fique desorganizado.

Vale lembrar que nós temos a política de remover do fórum (enviar para a "Lixeira") as mensagens duplicadas.

Além disso, essa sua questão já foi respondida no outro tópico que você criou:

viewtopic.php?f=118&t=7208

Se você ainda tem dúvidas quanto a resposta que lhe foi enviada, então por favor poste naquele tópico as suas novas dúvidas.

Quanto a questão de colocar uma figura na sua mensagem, siga as instruções abaixo.

1) Durante a edição de sua mensagem, use a opção Anexar arquivo.
Anexar.png
Anexar.png (15.34 KiB) Exibido 1510 vezes


2) Em seguida, use o botão "Colocar na linha" para inserir a imagem no ponto desejado do texto.
Colar na linha.png
Colar na linha.png (12.76 KiB) Exibido 1510 vezes


Atenção: enquanto você está escrevendo a sua mensagem, a figura não aparece. Ao invés disso, aparecerá um texto do tipo:

Código: Selecionar todos
[attachment=0]figura.png[/attachment]


3) Pronto! Depois que você enviar a sua mensagem, a figura irá aparecer no lugar desejado.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.