• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida sobre seno

Dúvida sobre seno

Mensagempor rodsales » Sáb Jun 06, 2009 21:09

Tenho duas dúvidas. A primeira, a função seno como função ímpar(explicar mais para leigo entender, não como nos livros de matemática). Eu não entendi por que é função ímpar.

Já a segunda, dê o período da função y=|sen x|. Para saber o período era só pegar o coeficiente de x e jogar na expressão
p=2\pi/m. Para mim como resposta seria 2\pi, pois o coeficiente é 1. Mas, a resposta do livro está como \pi.


Grato,
Aguardo Respostas.
Avatar do usuário
rodsales
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Ter Abr 14, 2009 21:28
Formação Escolar: ENSINO MÉDIO
Área/Curso: administração
Andamento: cursando

Re: Dúvida sobre seno

Mensagempor Marcampucio » Sáb Jun 06, 2009 21:44

uma função é ímpar se, para todo x pertencente ao seu domínio f(x)=-f(-x)
Imagem

Imagem
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: Dúvida sobre seno

Mensagempor rodsales » Dom Jun 07, 2009 15:24

Então para a segunda pergunta, quando temos módulo o mais certo para sabermos o período é criar um gráfico, em vez de confiarmos naquela expressão?


Grato,
Aguardo Respostas.
Avatar do usuário
rodsales
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Ter Abr 14, 2009 21:28
Formação Escolar: ENSINO MÉDIO
Área/Curso: administração
Andamento: cursando

Re: Dúvida sobre seno

Mensagempor Marcampucio » Dom Jun 07, 2009 15:45

Aquela regra é boa para a função f(x)=sen(ax), pois se baseia no fato de que o período fundamental de f(x)=sen(x) é 2\pi.

f(x)=|sen(x)| é outra função cujo período fundamental é \pi. Podemos analogamente dizer que o período de f(x)=|sen(ax)| é \frac{\pi}{a}

é sempre importante conhecer a função com alguma intimidade. Encontrar períodos não é tão simples como parece à primeira vista. Veja o caso do período de f(x)=sen(\frac{x}{2})+cos(x)
Imagem
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.