• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[integral definida com modulo]

[integral definida com modulo]

Mensagempor Giu » Qua Fev 08, 2012 16:08

\int_{-2}^{2}\left|x \right| + 3\left|x+1 \right|dx

não tenho nenhum resolvido com módulo e pode ser que caia na prova com módulo.
Fiz dessa maneira: estabeleci uma condição para \left|x \right|=x , quando x>0 e \left|x+1 \right|= (x+1), quando x>-1,
e \left|x \right|= -x, quando x<0 e \left|x+1 \right|= -(x+1), quando x< -1.

Obtendo dois resultados.

Alguma dica aí
Giu
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Fev 08, 2012 15:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: Quimica Licenciatura
Andamento: cursando

Re: [integral definida com modulo]

Mensagempor LuizAquino » Qua Fev 08, 2012 16:53

Giu escreveu:\int_{-2}^{2}\left|x \right| + 3\left|x+1 \right|\,dx


Aplicando a definição de módulo, temos que:

|x|=\begin{cases}
-x,\, x < 0 \\
x,\,x\geq 0
\end{cases}

3|x+1|=\begin{cases}
-3(x+1),\, x < -1 \\
3(x+1),\,x \geq -1
\end{cases}

Unindo essas informações, obtemos que:

|x|+3|x+1|=\begin{cases}
-x-3(x+1),\, x < -1 \\
-x+3(x+1),\, -1 \leq x < 0 \\
x + 3(x+1),\,x \geq 0
\end{cases}

Sendo assim, temos que:

\int_{-2}^{2}\left|x \right| + 3\left|x+1 \right|\, dx = \int_{-2}^{-1} -x - 3(x+1) \, dx + \int_{-1}^{0} -x + 3(x+1) \, dx + \int_{0}^{2} x + 3(x+1) \, dx

Agora termine o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59