• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sistema Linear + Trigonometria]

[Sistema Linear + Trigonometria]

Mensagempor mdiego » Ter Fev 07, 2012 22:07

Descobrir os valores de \theta b e \theta c que satisfazem as seguintes equações:

Vb\cdotSen(\theta b) + \sqrt[]{3}Vb\cdotcos(\theta b) + Vc\cdotSen(\theta c) - \sqrt[]{3}Vc\cdotcos(\theta c) = 0

Vb\cdotcos(\theta b) - \sqrt[]{3}Vb\cdotSen(\theta b) + Vc\cdotcos(\theta c) + \sqrt[]{3}Vc\cdotSen(\theta c) + 1= 0

Os valores de Vb e Vc são conhecidos, e os ângulos \theta b e \theta b é menor do que 360º.

Não sei se há algum método matemático para resolver esse sistema. É um problema de engenharia, devo entrar com valores de Vb e Vc no Matlab e obter os respectivos ângulos. Provavelmente deve haver mais de uma solução possível.
mdiego
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Fev 07, 2012 21:38
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: [Sistema Linear + Trigonometria]

Mensagempor LuizAquino » Ter Fev 07, 2012 23:49

mdiego escreveu:Descobrir os valores de \theta b e \theta c que satisfazem as seguintes equações:

Vb\cdotSen(\theta b) + \sqrt[]{3}Vb\cdotcos(\theta b) + Vc\cdotSen(\theta c) - \sqrt[]{3}Vc\cdotcos(\theta c) = 0

Vb\cdotcos(\theta b) - \sqrt[]{3}Vb\cdotSen(\theta b) + Vc\cdotcos(\theta c) + \sqrt[]{3}Vc\cdotSen(\theta c) + 1= 0

Os valores de Vb e Vc são conhecidos, e os ângulos \theta b e \theta b é menor do que 360º.


mdiego escreveu:Não sei se há algum método matemático para resolver esse sistema.


Utilize um método de resolução para sistemas não lineares. Por exemplo, vide os métodos descritos nessa página:

Métodos Iterativos - Sistemas Não Lineares
http://www.math.ist.utl.pt/~calves/cour ... pii23.html

mdiego escreveu:É um problema de engenharia, devo entrar com valores de Vb e Vc no Matlab e obter os respectivos ângulos.


Consulte a página de ajuda do programa:

Solve system of nonlinear equations - MATLAB
http://www.mathworks.com/help/toolbox/o ... solve.html
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Sistema Linear + Trigonometria]

Mensagempor mdiego » Qua Fev 08, 2012 13:52

Valeu pela dica Luiz!

Pelo visto terei mesmo que recorrer a esse método. Estou vendo ainda se realmente será necessário resolver o sistema, mas se for preciso já sei como solucioná-lo.
mdiego
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Fev 07, 2012 21:38
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.