por Aquamarine » Seg Fev 06, 2012 19:24
Para todo x Pertencente ]?/2 ?/2] (tg x² + 1) . (sen x² –1) é –1.
Pelo gabarito a afirmação é correta
Mas eu fiz e deu diferente
(tg x² + 1) . (sen x² –1)
Pela relação derivada
(tg x² + 1)= secx²
secx² . senx²-1 =
1/cosx² . senx ² =
senx²-1/cosx²
que equivale a tgx²-1
Se alguem alguem souber a
aagradeço
-
Aquamarine
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Seg Fev 06, 2012 19:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por ant_dii » Seg Fev 06, 2012 21:15
Bom, primeiramente você deve se atentar ao fórum correto para sua dúvida... O que você esta postando é sobre função trigonométrica. Mas já que aqui estamos vamos lá...
Aquamarine escreveu:Para todo x Pertencente ]?/2 ?/2] (tg x² + 1) . (sen x² –1) é –1.
Bom você quer dizer que

.
Sim isto é verdade, veja que, como você colocou

e

Assim

...
Feito??
Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Função afim] Determinar a função afim
por Apprentice » Dom Set 30, 2012 21:49
- 4 Respostas
- 3087 Exibições
- Última mensagem por Apprentice

Seg Out 01, 2012 12:19
Funções
-
- funçao afim
por maiara amaral » Dom Mai 11, 2008 18:08
- 2 Respostas
- 4763 Exibições
- Última mensagem por Kabarosk

Sex Mai 29, 2015 01:45
Pedidos
-
- Funçao Afim
por thais silva » Qua Mai 19, 2010 17:30
- 3 Respostas
- 2870 Exibições
- Última mensagem por MarceloFantini

Seg Jul 12, 2010 22:04
Funções
-
- funçao afim
por emilly » Ter Ago 17, 2010 20:40
- 6 Respostas
- 7051 Exibições
- Última mensagem por emilly

Qui Ago 19, 2010 18:32
Funções
-
- Função Afim
por Kelvin Brayan » Ter Mai 31, 2011 01:59
- 1 Respostas
- 2861 Exibições
- Última mensagem por Kelvin Brayan

Ter Jun 07, 2011 16:29
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.