por Joaozulu » Sáb Fev 04, 2012 17:22
(16:55:22) Joaozulu: Não consigo concluir a seguinte questão: 27!=n.10^p.
(16:57:17) Joaozulu: Minha tentativa: 27.26!=n.10^p => 26!=10^p => log 26!=p ... Faz sentido?
-
Joaozulu
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Fev 04, 2012 16:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Direito
- Andamento: formado
por Arkanus Darondra » Sáb Fev 04, 2012 18:09
A questão possui enunciado? Se sim, coloque-o.
Somente assim poderemos ver se faz sentido o que você fez.
-
Arkanus Darondra
- Colaborador Voluntário

-
- Mensagens: 187
- Registrado em: Seg Dez 26, 2011 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Joaozulu » Seg Fev 06, 2012 22:26
(UNB-DF) Admita que 27!=n.10^p, em que n e p são números naturais e n não é múltiplo de 10. Calcule o valor de p.
-
Joaozulu
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Fev 04, 2012 16:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Direito
- Andamento: formado
por LuizAquino » Ter Fev 07, 2012 14:58
Joaozulu escreveu:(UNB-DF) Admita que 27!=n.10^p, em que n e p são números naturais e n não é múltiplo de 10. Calcule o valor de p.
Desenvolvendo a equação, temos que:





Decompondo 27! em fatores primos, temos que

Agora podemos reescrever como:



Como
p deve ser natural, o número

que aparece dentro do logaritmo (na base 10) deve ser uma potência de 10. Para que isso aconteça, devemos ter:

Note que sendo
n esse valor, ele não será múltiplo de dez (o que obedece ao enunciado do exercício).
Ficamos então com:

Portanto, temos que
p = 6.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- como resolver essa questao
por Thassya » Qui Mai 21, 2009 23:25
- 1 Respostas
- 4117 Exibições
- Última mensagem por marciommuniz

Sex Mai 22, 2009 12:23
Trigonometria
-
- Como resolver essa questão?
por jmoura » Sáb Mar 31, 2012 23:58
- 3 Respostas
- 2503 Exibições
- Última mensagem por NMiguel

Dom Abr 01, 2012 19:13
Cálculo: Limites, Derivadas e Integrais
-
- Como resolver essa questão da Ufpel?
por ativirginis » Seg Fev 27, 2012 15:02
- 1 Respostas
- 4989 Exibições
- Última mensagem por LuizAquino

Ter Fev 28, 2012 18:41
Funções
-
- Sem ideia de como resolver essa questão.
por jemourafer » Sáb Abr 28, 2012 00:38
- 1 Respostas
- 1504 Exibições
- Última mensagem por Russman

Sáb Abr 28, 2012 04:52
Cálculo: Limites, Derivadas e Integrais
-
- Como resolver essa questão de probabilidade
por amanda s » Sex Nov 15, 2013 15:11
- 1 Respostas
- 2678 Exibições
- Última mensagem por DanielFerreira

Sex Nov 29, 2013 00:33
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.