• Anúncio Global
    Respostas
    Exibições
    Última mensagem

uso e aplicação do termo "concorrência" (candidato/vaga)

uso e aplicação do termo "concorrência" (candidato/vaga)

Mensagempor gnunes85 » Seg Jan 30, 2012 16:38

Sabe-se que o termo concorrência indica a relação de candidatos às vagas oferecidas em um concurso/vestibular/etc. Acontece que a concorrência a meu ver não significa muito pois se para um curso de Medicina, e.g., a concorrência é de 30/1 enquantoque para um curso novo com poucas vagas, v.g., o de Gastronomia, a concorrência for de 50/1, o conhecimento matemático comum nos diria que o curso de Gastronomia é mais "difícil" ou mais concorrido. Todavia, os fatos mostram que mesmo menos concorrido, nessa situação (oferecimento de poucas vagas pelo curso de Gastronomia o que implicou numa alta concorrência, o que me permitiria chamar de concorrência "aparente"), o curso de Medicina exige uma nota mais alta do que o outro curso.

Então, que parâmetro falta para calcular a "facilidade" de um concurso? Fatores extrínsecos à matemática? Ou isso não dá para calcular? Ou tudo que eu falei está errado (em que parte)?

2. Num mesmo nível, para a mesma cidade, mesmo curso, etc. sendo que a instituição resolveu "repartir" a concorrêcia: pessoas até 25 anos e acima disso. Então quem tem menos de 25 está concorrendo para uma vaga, e acima para 3 vagas. Acontece que a instituição permite que algumas pessoas com idade próxima aos 25 anos escolha em qual das 2 categorias queira concorrer... Sendo assim, no final das inscrições, ficaram 99 inscritos na primeira categoria (para uma vaga) e 299 inscritos para a outra (com 3 vagas). Uma pessoa com a possibilidade de escolher entre as duas categorias e ainda podendo se inscrever deveria escolher qual das 2 categorias???

O senso comum diz que, considerando o fator idade como irrelevante, é mais fácil eliminar 99 candidatos do que 297... ou não? o que a Matemática diz sobre isso?
gnunes85
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Jan 30, 2012 15:56
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: uso e aplicação do termo "concorrência" (candidato/vaga)

Mensagempor MarceloFantini » Seg Jan 30, 2012 17:29

O conhecimento comum frequentemente se equivoca, pois concorrência não significa dificuldade no curso. Não é possível estimar a facilidade de um curso olhando apenas para a relação candidato/vaga. É comum associar "muito concorrido" com "muito difícil", mas isso depende do nível da concorrência.

A relação candidato/vaga é a mesma para quem tem 25 anos ou quem tem acima disso. A questão é sorte em escolher. Você assume 99 candidatos com mesmo nível que 299, o que pode não ser verdadeiro. É mais fácil superar 297 pessoas despreparadas do que 98 treinadas por anos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}