• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Qual a probabilidade de isso acontecer?

Qual a probabilidade de isso acontecer?

Mensagempor zapper » Seg Jan 30, 2012 05:22

Toda vez que um evento ocorre, ele tem 51.35% de probabilidade de chegar no resultado A.

Esse evento ocorrerá 1024 vezes. Qual a probabilidade de que, em toda esta série, exista uma sequência de pelo menos 9 vezes consecutivas em que não foi obtido o resultado A?

(Desculpem pelos números quebrados, trata-se de um problema real. Caso queiram simplificar as variáveis tudo bem, mas deixem a maneira de resolução para que eu possa chegar ao resultado do problema com estas variáveis, obrigado).
zapper
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Jan 30, 2012 05:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas de Informação
Andamento: cursando

Re: Qual a probabilidade de isso acontecer?

Mensagempor fraol » Seg Jan 30, 2012 21:48

Esse problema tá me parecendo um daqueles talhados para aplicarmos o computador na solução devido ao grande número de contas que devem ser feitas.

Um caminho para a solução:

Chamemos de A a probabilidade de obter-se o resultado A.

Chamemos de \bar{A} a probabilidade de não obter-se o resultado A.

Em 1024 ocorrências quer-se pelo menos 9 vezes consecutivas o evento \bar{A} .

Isto quer dizer que podemos ter 9 ou 10 ou 11 ou 12 ou 13 ou ... ou 1024 ocorrências consecutivas do evento \bar{A} . Sentiu o tamanho da encrenca! Ou seja deve-se somar todas essas probabilidades para se chegar à probabilidade total.

Para ocorrência de 9 vezes consecutivas o evento \bar{A} devemos calcular (0,4865)^9.

Para os demais casos deve-se repetir o procedimento e somar todos os resultados ao final.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.