por Profeta » Qui Jan 26, 2012 22:08
-
Profeta
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Jan 26, 2012 14:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura Matemática
- Andamento: cursando
por ant_dii » Sex Jan 27, 2012 02:54
Nem precisava disso tudo.
Veja,

então

Mas para entender melhor você precisará estudar sobre Limite de função contínua, que foi a ferramenta que usei aqui...
Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por LuizAquino » Sex Jan 27, 2012 20:44
ant_dii escreveu:Veja,

então

Há dois casos para analisar.
Caso 1) 0 < a < 1
Nesse caso, temos que

é uma indeterminação do tipo

.
Aplicando a Regra de L'Hospital, temos que:
![\frac{1}{\ln a}\lim_{x\to -\infty} \frac{ [\ln(-x)]^\prime}{[a^x]^\prime} = \frac{1}{\ln a}\lim_{x\to -\infty} \frac{\frac{1}{x}}{a^x\ln a} \frac{1}{\ln a}\lim_{x\to -\infty} \frac{ [\ln(-x)]^\prime}{[a^x]^\prime} = \frac{1}{\ln a}\lim_{x\to -\infty} \frac{\frac{1}{x}}{a^x\ln a}](/latexrender/pictures/2ba608baa7ecaf1b449d2ca4cd419a34.png)
Caso 2) a > 1
Nesse caso, temos que:



-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por ant_dii » Sex Jan 27, 2012 21:24
Opa...
Valew LuizAquino...
Esqueci deste detalhe na hora de escrever... resolvi para a=2, generalizei, pois achei tranquilo fazer isso, e nem me toquei... Detalhe importante...
Mil desculpas
Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por Profeta » Sáb Jan 28, 2012 10:32
obrigado pela observação da equipeé assim um por todos e todos por um.
Jesus abençoe vocês
-
Profeta
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Jan 26, 2012 14:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura Matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [limites] reciso de ajuda nessa questão de limites raiz quad
por alexia » Ter Nov 15, 2011 19:55
- 1 Respostas
- 5414 Exibições
- Última mensagem por LuizAquino

Qua Nov 16, 2011 15:16
Cálculo: Limites, Derivadas e Integrais
-
- [Limites]Preciso de ajuda para calcular alguns limites
por Pessoa Estranha » Ter Jul 16, 2013 17:15
- 2 Respostas
- 4760 Exibições
- Última mensagem por LuizAquino

Qua Jul 17, 2013 09:12
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Ajuda com limites no infinito e continuidade
por umbrorz » Dom Abr 15, 2012 00:54
- 3 Respostas
- 4786 Exibições
- Última mensagem por umbrorz

Seg Abr 16, 2012 11:46
Cálculo: Limites, Derivadas e Integrais
-
- [limites] exercicio de calculo envolvendo limites
por lucasdemirand » Qua Jul 10, 2013 00:45
- 1 Respostas
- 4812 Exibições
- Última mensagem por e8group

Sáb Jul 20, 2013 13:08
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Dúvida sobre limites laterais
por Subnik » Sáb Abr 04, 2015 18:24
- 1 Respostas
- 2797 Exibições
- Última mensagem por DanielFerreira

Dom Abr 12, 2015 16:10
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.