• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação

Equação

Mensagempor nathyn » Qua Jan 25, 2012 19:20

Oie, sei que é meio besta a questão, mas ta ae:
{x}^{\sqrt[2]{x}}=\sqrt[2]{{x}^{x}}

Eu tentei fazer elevando ambos os lados ao quadrado, e assim fazendo encontrei:
{x}^{\sqrt[2]{2x}}= {x}^{x}

Sei q está errado pois achei como resposta x=2, mas a resposta do livro é: 0,1 e 4

Me ajudem ae por favor... Brigada.
nathyn
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Nov 16, 2011 14:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Equação

Mensagempor ant_dii » Qua Jan 25, 2012 20:26

Olha, eu encontrei a as ráizes x=4 e x=0, mas não encontrei a raíz x=1 com manipulação algébrica...

Fiz o seguinte
x^{\sqrt{x}}=\sqrt{x^x} \Rightarrow x^{\sqrt{x}}=(x^x)^{\frac{1}{2}}=x^{\frac{x}{2}} \Rightarrow \\ \\ \Rightarrow \sqrt{x}=\frac{x}{2} \Rightarrow x=\frac{x^2}{4} \Rightarrow 4x=x^2 \Rightarrow x=0 \quad \mbox{ou} \quad x=4

Mas a raíz x=1 é óbvia...
O problema é quando x=0. Provavelmente o seu livro esta errado, pois não há definição (pelo menos que seja trivial para o ensino médio) para 0^0.
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Equação

Mensagempor nathyn » Qui Jan 26, 2012 12:34

Pooo brigadão, o livro é aquele fundamentos da matematica elementar, mas o q mais importava mesmo
era a extração da raiz que eu não tava sabendo fazer certo.
Muito obrigada ;D
nathyn
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Nov 16, 2011 14:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)