• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Volume e Esboço do sólido - x=y^2 e x=9

Volume e Esboço do sólido - x=y^2 e x=9

Mensagempor joserd » Qua Jan 25, 2012 21:17

Seja R a região delimitada pelos gráficos de x=y^2 e x=9. Determine o volume do sólido S que tem R como base , e tal que toda seção transversal por um plano perpendicular ao eixo Ox seja um triangulo equilátero. Esboce o sólido.
Consegui apenas encontrar os pontos comuns e fazer os gráficos da área . Não tenho ideia de como clacular o volume e do esboço do sólido.
joserd
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sex Set 16, 2011 20:57
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: analise
Andamento: formado

Re: Volume e Esboço do sólido - x=y^2 e x=9

Mensagempor LuizAquino » Qui Jan 26, 2012 00:32

joserd escreveu:Seja R a região delimitada pelos gráficos de x=y^2 e x=9. Determine o volume do sólido S que tem R como base , e tal que toda seção transversal por um plano perpendicular ao eixo Ox seja um triangulo equilátero. Esboce o sólido.


joserd escreveu:Consegui apenas encontrar os pontos comuns e fazer os gráficos da área . Não tenho ideia de como clacular o volume e do esboço do sólido.


As figuras abaixo ilustram a região R e o sólido S.

região_R.png
região_R.png (10.17 KiB) Exibido 811 vezes


sólido_S.png
sólido_S.png (33.16 KiB) Exibido 811 vezes


Para determinar o volume de S, comece determinando a área A do triângulo equilátero destacado em função da posição x.

Para isso, note que L = 2\sqrt{x} .

Desse modo, temos que a área A é dada por:

A = \frac{L^2\sqrt{3}}{4} = x\sqrt{3}

Enxergando a área A como uma função de x, temos que o volume V de S será dado por:

V = \int_0^9 A(x)\, dx

V = \int_0^9 x\sqrt{3}\, dx

V = \frac{81}{2}\sqrt{3}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.