• Anúncio Global
    Respostas
    Exibições
    Última mensagem

volume de um sólido

volume de um sólido

Mensagempor ah001334 » Ter Dez 20, 2011 10:47

Pessoa vejam essa questão, eu fiz e a professora me deu errado não sei pq para mim esta correto

Determine o volume de um sólido formado pela revolução em torno do eixo y, da região delimitada pelo gráfico de y=x³ limitada por y=8 e x=0

v= \pi.\int_{8}^{0}\left(\sqrt[3]{y} \right){}^{2}

v= \pi.\frac{{9y}^{\frac{10}{9}}}{10}

v= \pi.\left[9.\frac{{8}^{{10}^{9}}}{10}-9.\frac{{0}^{\frac{10}{9}}}{10}\right]

v= 9,07\pi uv

em torno de y

y=8
ah001334
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Seg Out 17, 2011 12:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: volume de um sólido

Mensagempor LuizAquino » Ter Dez 20, 2011 11:24

ah001334 escreveu:Determine o volume de um sólido formado pela revolução em torno do eixo y, da região delimitada pelo gráfico de y=x³ limitada por y=8 e x=0



ah001334 escreveu:Pessoa vejam essa questão, eu fiz e a professora me deu errado não sei pq para mim esta correto (...)

v= \pi.\int_{8}^{0}\left(\sqrt[3]{y} \right){}^{2}

v= \pi.\frac{{9y}^{\frac{10}{9}}}{10}


Note que:

\pi \int \left(\sqrt[3]{y}\right)^2\,dy = \frac{3\pi}{5}y^{\frac{5}{3}} + c

Agora reveja a sua solução.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.