• Anúncio Global
    Respostas
    Exibições
    Última mensagem

qual o valor do litro

qual o valor do litro

Mensagempor antonybel » Ter Dez 13, 2011 10:54

UM motorista abasteceu, em seu altomóvel, 24 litros de gasolina a 2,50 e 16 litros de alcool a 1,30. Qto saiu o preço da mistura?

- a resposta não é a media do preço.
- tentei 1/24 do total mais 1/16 do total tbem não deu.
- sei que a respsota é 2,22.
antonybel
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Sex Nov 11, 2011 10:12
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: qual o valor do litro

Mensagempor Neperiano » Ter Dez 13, 2011 14:27

Ola

(24.2,50 + 16.1,30)/40

Achei 2,02

Sei que é média ponderada

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: qual o valor do litro

Mensagempor antonybel » Ter Dez 13, 2011 15:29

Valeu, é muito simples mas não me ocorreu. Um abraço
antonybel
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Sex Nov 11, 2011 10:12
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}