por Gaussiano » Sáb Dez 10, 2011 13:59
As bissetrizes internas dos ângulos Aˆ e Cˆ do triângulo ABC cortam-se no ponto I. Sabe-se que
AI = BC e que m(ICˆA) = 2m(IAˆC) . Determine a medida do ângulo ABˆC .
Solução:
Seja N o ponto de encontro da bissetriz do ângulo ?ACB com o lado AB . Pelo caso A.L.A,
os triângulos NCA e ABC são congruentes. Consequentemente NC = AB = BC .
Pelo teorema do ângulo externo, ?BNC = NAC + ACN = ?NCB . portanto BN = BC = NC
e BNC é equilátero. Daí ?ABC = 60,?BCA = 80 e ?BAC = 40.
Eu vi essa solução e não entendi porque os triângulos NCA e ABC são semelhantes, já que o ângulo C em ABC é 4x e em NCA é 2x.
També não entendi porque ?BNC = NAC + ACN = ?NCB.
-
Gaussiano
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Nov 04, 2011 09:57
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Semelhança de triângulos] Triângulos quadrados
por Debora Bruna » Seg Ago 08, 2016 12:18
- 0 Respostas
- 1390 Exibições
- Última mensagem por Debora Bruna

Seg Ago 08, 2016 12:18
Geometria Plana
-
- Semelhança de triangulos
por DanielRJ » Ter Dez 28, 2010 19:30
- 7 Respostas
- 5217 Exibições
- Última mensagem por Otavio Rubiao

Qui Jan 27, 2011 10:36
Geometria Plana
-
- Semelhança de triângulos
por igorcamilo » Sáb Jun 04, 2011 19:55
- 1 Respostas
- 2351 Exibições
- Última mensagem por Adriano Tavares

Dom Jan 01, 2012 14:55
Geometria Plana
-
- semelhanca de triangulos
por bmachado » Ter Mar 13, 2012 17:02
- 1 Respostas
- 1407 Exibições
- Última mensagem por bmachado

Ter Mar 13, 2012 17:20
Geometria Plana
-
- Semelhança de triângulos
por TAE » Qua Jun 20, 2012 01:12
- 2 Respostas
- 4335 Exibições
- Última mensagem por Russman

Qua Jun 20, 2012 05:01
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.