• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resolva ,em R a seguinte inequação logaritmica

Resolva ,em R a seguinte inequação logaritmica

Mensagempor andersontricordiano » Seg Nov 28, 2011 22:54

Resolva ,em R a seguinte inequação :
{2(lnx)}^{2}-lnx>6


Resposta: \inR\inR0<x<{e}^{\frac{-3}{2}} ou x>{e}^{2}



Agradeço quem resolver!
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Resolva ,em R a seguinte inequação logaritmica

Mensagempor eds_eng » Seg Dez 05, 2011 19:15

nessa equação ,é aconselhável atribuir uma letra para lnx.

assim, chamando lnx = u , teremos:

2u^2 - u maior que 6

2u^2 - u - 6 maior que 0

agora é só resolver essa inequação.

2u^2 - u - 6 = 0

calculando o delta, temos :

\Delta = {-1}^{2}-4*2*(-6)

\Delta = 1+48 = 49

assim:

{u}_{1} = \frac{-1+7}{4} = \frac{6}{4} = \frac{3}{2}

{u}_{2} = \frac{-1-7}{4} = \frac{-8}{4} = -2

logo o intervalo em que a imagem é maior que zero é :

u menor que -2 ou u maior que \frac{3}{2}

agora basta encontrar x em lnx = u .

lnx = -2 \Rightarrow x = {e}^{-2}

lnx = \frac{3}{2} \Rightarrow x = {e}^{\frac{3}{2}}

como ambos valores são maiores que zero, então eles são válidos.

assim, os intervalos a serem considerados são:

x maior que 0

x menor que {e}^{-2}

x maior que {e}^{\frac{3}{2}}

logo a resposta é : 0 maior que x menor que {e}^{-2} ou x maior que {e}^{\frac{3}{2}}
eds_eng
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Dez 04, 2011 09:34
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59