• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PROGRESSÃO ARITMETICA

PROGRESSÃO ARITMETICA

Mensagempor matem » Seg Nov 28, 2011 20:56

Em uma PA de razão igual ao numero de termos o primeiro e o ultimo são respectivamente 4 e 46.Escreva esta PA.
matem
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Nov 28, 2011 18:04
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: PROGRESSÃO ARITMETICA

Mensagempor TheoFerraz » Seg Nov 28, 2011 21:21

PA.. termo geral é:

{a}_{n} = {a}_{1} + (n-1)r

no seu caso, voce já sabe a1

{a}_{n} = 4 + (n-1)r

e no caso do ultimo termo temos:

{a}_{{n}_{final}}= 46 = 4 + ({n}_{final}-1)r

esse Nfinal mostra não só o "numero" do ultimo termo... mostra também a quantidade de termos...

certo? isso é bem facil...

agora pense BEM na frase:

... razão igual ao número de termos
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}