por manolo223 » Sáb Nov 26, 2011 15:26
Alguem poderia me dar uma ajudar sobre exercicio de trajetorias ortogonais?
Encontre a familia de curvas ortogonais a familia de circulos que contem os pontos (1,0) e (-1,0).
Como eu montaria a equaçao para resolver la? meu problema esta na interpretaçao para montar a equaçao.
-
manolo223
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Dom Nov 13, 2011 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: física/engenharia
- Andamento: cursando
por LuizAquino » Dom Nov 27, 2011 18:40
manolo223 escreveu:Encontre a família de curvas ortogonais a família de círculos que contém os pontos (1,0) e (-1,0).
manolo223 escreveu:Como eu montaria a equaçao para resolver la? meu problema esta na interpretaçao para montar a equaçao.
Primeiro, determine a família de circunferências (e não de círculos como diz o exercício) que contém os pontos (1,0) e (-1,0).
Lembre-se que a equação de uma circunferência de centro (xc, yc) e raio r é dada por:

Substituindo os pontos dados, você obtém o sistema:

A solução desse sistema é

e

.
Temos então duas famílias de circunferências:
(i)

;
(ii)

.
Vamos considerar primeiro a família (i).
Derivando implicitamente, temos que:

Precisamos agora eliminar da expressão da derivada o termo

, para que a derivada fique em função apenas de x e y. Para isso, vamos usar a equação da circunferência:

Desse modo, podemos escrever que:

Para que uma outra curva

seja ortogonal a essa família de circunferências, em todos os pontos de interseção (X, Y) entre essas curvas devemos ter:

Ou seja, precisamos resolver a EDO:

Agora tente terminar o exercício.
Vale lembrar que depois você deve seguir esse mesmo raciocínio para a família de circunferências (ii).
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Trajetórias ortogonais a familia a 1 parametro
por jearaujo01 » Qui Mar 03, 2016 16:27
- 4 Respostas
- 2362 Exibições
- Última mensagem por adauto martins

Qua Mar 09, 2016 16:58
Cálculo: Limites, Derivadas e Integrais
-
- [CURVAS] CÁLC II - Trajetórias e Parametrização
por inkz » Ter Nov 20, 2012 01:12
- 6 Respostas
- 4358 Exibições
- Última mensagem por inkz

Ter Nov 20, 2012 11:53
Cálculo: Limites, Derivadas e Integrais
-
- vetores são ortogonais.
por Ana Maria da Silva » Seg Abr 08, 2013 15:13
- 1 Respostas
- 3030 Exibições
- Última mensagem por e8group

Seg Abr 08, 2013 16:22
Geometria Analítica
-
- retas paralelas e ortogonais ao plano
por ricardosanto » Sáb Dez 15, 2012 11:44
- 1 Respostas
- 1525 Exibições
- Última mensagem por young_jedi

Sáb Dez 15, 2012 20:26
Álgebra Linear
-
- Produto Interno - Vetores Ortogonais
por iarapassos » Qui Mar 21, 2013 00:02
- 1 Respostas
- 1757 Exibições
- Última mensagem por Russman

Qui Mar 21, 2013 12:14
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.