• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites

Limites

Mensagempor Beatriz4 » Sex Nov 25, 2011 23:45

Já resolvi este limite mas não me dá o valor certo. Vou colocar aqui a minha resolução e gostaria que alguém me dissesse onde está o meu erro(s).

(n->+inf)lim (2^(2n+1))*((n+2)/(4n+1))^n

lim (2^(2n+1))*((n+2)/(4n+1))^n = lim ((2^(2n+1))/((n+2)/(4n+1))^n)*(((n+2)/(4n+1))^n)/((n+2)/(4n+1))^n = lim 2*((2^2)^n)/((n+2)/(4n+1))^n =
= lim 2*(4/((n+2)/(4n+1)))^n = lim 2*(4(4n+1)/(n+2)))^n = lim 2 ((16n+4)/(n+2))^n

Até aqui penso estar bem, gostaria que me dissessem como continuar para saber se a minha resoluçã está correcta. segundo um progrma de resolução de limites este dá 2e^(7/4) e a mim deu-me +inf.

Agradecia mesmo se me ajudassem!
Beatriz4
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Nov 25, 2011 21:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Biomédica
Andamento: cursando

Re: Limites

Mensagempor LuizAquino » Sáb Nov 26, 2011 17:57

Beatriz4 escreveu:Já resolvi este limite mas não me dá o valor certo. Vou colocar aqui a minha resolução e gostaria que alguém me dissesse onde está o meu erro(s).

(n->+inf)lim (2^(2n+1))*((n+2)/(4n+1))^n


Eis o limite que você deseja calcular:

\lim_{n\to +\infty} 2^{2n+1}\cdot \left(\frac{n+2}{4n+1}\right)^n

Beatriz4 escreveu:lim (2^(2n+1))*((n+2)/(4n+1))^n = lim ((2^(2n+1))/((n+2)/(4n+1))^n)*(((n+2)/(4n+1))^n)/((n+2)/(4n+1))^n = lim 2*((2^2)^n)/((n+2)/(4n+1))^n =
= lim 2*(4/((n+2)/(4n+1)))^n = lim 2*(4(4n+1)/(n+2)))^n = lim 2 ((16n+4)/(n+2))^n


Utilizando as regras de precedência, o que você escreveu acima foi:

\lim_{n\to +\infty} 2^{2n+1}\cdot \left(\frac{n+2}{4n+1}\right)^n =

= \lim_{n\to +\infty} \frac{2^{2n+1}}{\left(\frac{n+2}{4n+1}\right)^n} \cdot \frac{\left(\frac{n+2}{4n+1}\right)^n}{\left(\frac{n+2}{4n+1}\right)^n}

= \lim_{n\to +\infty}  2\cdot \frac{\left[\left(2^2\right)^n\right]}{\left(\frac{n+2}{4n+1}\right)^n}

= \lim_{n\to +\infty} 2\cdot \left(\frac{4}{\frac{n+2}{4n+1}}\right)^n

= \lim_{n\to +\infty} 2\cdot \left[\frac{4(4n+1)}{n+2}\right]^n

= \lim_{n\to +\infty} 2\cdot \left(\frac{16n+4}{n+2}\right)^n

Beatriz4 escreveu:Até aqui penso estar bem, gostaria que me dissessem como continuar para saber se a minha resoluçã está correcta.

Você já errou do primeiro para o segundo passo.

Beatriz4 escreveu:segundo um progrma de resolução de limites este dá 2e^(7/4) e a mim deu-me +inf.


\lim_{n\to +\infty} 2^{2n+1}\cdot \left(\frac{n+2}{4n+1}\right)^n =

= \lim_{n\to +\infty} 2\cdot 4^n \cdot \left(\frac{n+2}{4n+1}\right)^n

= \lim_{n\to +\infty} 2\left(4\cdot \frac{n+2}{4n+1}\right)^n

= \lim_{n\to +\infty} 2\left[4 \cdot \frac{n\left(1+\frac{2}{n}\right)}{4n\left(1+\frac{1}{4n}\right)}\right]^n

= \lim_{n\to +\infty} 2\left[\frac{\left(1+\frac{2}{n}\right)}{\left(1+\frac{1}{4n}\right)}\right]^n

=  2\left[\frac{\displaystyle{\lim_{n\to +\infty}\left(1+\frac{2}{n}\right)^n}}{\displaystyle{\lim_{n\to +\infty} \left(1+\frac{1}{4n}\right)^n}}\right]

=  2\left(\frac{e^2}{e^{\frac{1}{4}}}\right)

=  2e^{\frac{7}{4}}

Observação

Note que:

\lim_{n\to +\infty}\left(1+\frac{k}{n}\right)^n = e^{k}

De fato, fazendo a substituição u = \frac{k}{n} , temos que:

\lim_{n\to +\infty}\left(1+\frac{k}{n}\right)^n = \lim_{u\to 0}\left(1+u\right)^\frac{k}{u}

= \lim_{u\to 0} \left[\left(1+u\right)^\frac{1}{u}\right]^k

=  \left[\lim_{u\to 0} \left(1+u\right)^\frac{1}{u}\right]^k

= e^k
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limites

Mensagempor Beatriz4 » Dom Nov 27, 2011 11:05

Obrigada pela ajuda =)
Beatriz4
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Nov 25, 2011 21:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Biomédica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59