• Anúncio Global
    Respostas
    Exibições
    Última mensagem

DERIVADA

DERIVADA

Mensagempor quantun » Qua Mai 20, 2009 16:29

olar, eu tive 1 test hj e me deparei com esta questao;

dada a funçao f(x)=[arsen(-2x²-x)+2]³

a)calcule g(0)
b)calcule g' (0)

eu tentei 2 formas diferentes uma usando a derivada dy/du que deu 2 respostas uma = a "9x.arcsen(-2x²-x)cos(-2x²-x)" e outra = a "32x.arcsen(-2x)cos(-2x)" e a segunda forma de calculo deu a seguinte resposta g(0)=5arcsen(-2x)isso usando a regra do tombo, mas nao estou satisfeito com os resultados.
alguem poderia me dar uma segunda opniao?
Editado pela última vez por quantun em Qui Mai 21, 2009 02:43, em um total de 1 vez.
quantun
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Mai 20, 2009 16:14
Formação Escolar: GRADUAÇÃO
Área/Curso: BACHARELADO EM FISICA
Andamento: cursando

Re: DERIVADA

Mensagempor quantun » Qua Mai 20, 2009 16:36

texto removido
Editado pela última vez por quantun em Qui Mai 21, 2009 02:46, em um total de 1 vez.
quantun
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Mai 20, 2009 16:14
Formação Escolar: GRADUAÇÃO
Área/Curso: BACHARELADO EM FISICA
Andamento: cursando

Re: DERIVADA

Mensagempor Molina » Qui Mai 21, 2009 01:44

Boa noite.

Acho que aqui você terá que realmente fazer a regra da cadeia..

\frac{dy}{dx}=\frac{dy}{dv}.\frac{dv}{dw}.\frac{dw}{dx}, sendo:

y=u^2

u=arcsen(w)+2

e w=-2x^2-x



Abraços e bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: DERIVADA

Mensagempor quantun » Qui Mai 21, 2009 02:41

ta mais e o que eu faço com esta potencia do lado de fora dos colchetes?
e ufiz assim:

regra do tombo: g(0)= [arcsen(-2x²-x)+2]³ ==>> 3arcsen(-2x)+2 logo dy/dx = dy/dv . dv/dw . dw/dx sendo,

f'(u)=3arcsen(u)+2 e g'(x)=(-2x) assim,

F'(x)=f'(g(x)).g'(x)
=3arccos(-2x)+2
=5arccos(-2x) <<<<<<<<<resposta final

esta correto?
quantun
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Mai 20, 2009 16:14
Formação Escolar: GRADUAÇÃO
Área/Curso: BACHARELADO EM FISICA
Andamento: cursando

Re: DERIVADA

Mensagempor Molina » Qui Mai 21, 2009 02:59

quantun escreveu:dada a funçao f(x)=[arsen(-2x²-x)+2]³

a)calcule g(0)
b)calcule g' (0)

(...)

Responde pra mim uma coisa antes:
Não seria pra calcular o f(0) e o f'(0) ao invés de calcular o g(0) e o g'(0)?

:idea:
*-)
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: DERIVADA

Mensagempor quantun » Qui Mai 21, 2009 10:29

sim é g'(0) e g(0), ue qe errei ali na equaçao mas é cm g e nao com f
quantun
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Mai 20, 2009 16:14
Formação Escolar: GRADUAÇÃO
Área/Curso: BACHARELADO EM FISICA
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.