• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Relação de áreas de triangulos sem medidas

Relação de áreas de triangulos sem medidas

Mensagempor carcleo » Qua Nov 16, 2011 07:53

Pessoal, bom dia.

A dúvida é a seguinte:

Tenho a figura abaixo onde não são pássadas nehum valor:

Imagem

Gostaria de saber, qual é a razão entre as areas do trinagulo ABC e o triângulo AB'C'.

Segundo a resposta do exercício, a resposta é:

S=1/9 . S1

Mas porque?

Grato a todos.
carcleo
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Nov 16, 2011 07:35
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Contabilidade
Andamento: formado

Re: Relação de áreas de triangulos sem medidas

Mensagempor SsEstevesS » Dom Nov 27, 2011 10:13

Ele nao fala qual o tipo de triangulo? nao fala nadinha nadinha?
SsEstevesS
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Dom Nov 27, 2011 10:06
Formação Escolar: ENSINO MÉDIO
Área/Curso: CEFET
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.