• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas]

[Derivadas]

Mensagempor thiago toledo » Qui Nov 10, 2011 16:34

Como resolvo este exercício?

Considere um triângulo retângulo no primeiro quadrante limitados pelos eixos coordenados e pela reta que passa pelo ponto P(2,3). Encontre os vértices do triangulo de areá máxima.
thiago toledo
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Set 13, 2011 18:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: [Derivadas]

Mensagempor LuizAquino » Qui Nov 10, 2011 17:29

Considere um triângulo retângulo no primeiro quadrante limitados pelos eixos coordenados e pela reta que passa pelo ponto P(2,3). Encontre os vértices do triangulo de areá máxima.


O exercício deveria solicitar os vértices do triângulo de área mínima. Vide figura abaixo.

thiago toledo escreveu:Como resolvo este exercício?


A figura abaixo ilustra o exercício.

triângulo.png
triângulo.png (5.04 KiB) Exibido 2509 vezes


Note que uma "área máxima" ocorreria quando a reta fosse paralela ao eixo x (passando por P), o que não formaria um triângulo. Ou ainda, também ocorreria uma "área máxima" se a reta estivesse passando por OP, mas nesse o triângulo não estaria limitado.

O exercício deveria então solicitar que sejam determinados os vértices A e B de modo que OAB tenha área mínima.

Lembre-se que a reta passando por A, P e B tem o formato f(x) = kx + m. Além disso, deve-se ter k < 0, já que a função deve ser decrescente (como ilustra a figura).

Como P = (2, 3) pertence a reta, deve ocorrer f(2)=3 \Rightarrow 2k+m = 3 .

O ponto A tem coordenada y igual a zero. Portanto, ele deve ter o formato A = (-m/k, 0).

Por outro lado, o ponto B tem coordenada x igual a zero. Portanto, ele deve ter o formato B = (0, m).

Nessas condições, a área de OAB será dada por:

S = \frac{-\frac{m}{k}\cdot m}{2} \Rightarrow S = -\frac{m^2}{2k}

Apesar do sinal de menos aparecer na expressão para S, note que S continua sendo um número positivo, pois m^2 \geq 0 e k < 0.

Lembrando-se que deve ocorrer 2k+m = 3, podemos dizer que:

S(m) = -\frac{m^2}{3-m}

Basta agora encontrar o ponto de mínimo dessa função.

Tente concluir o exercício a partir daqui.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.