• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Grafico Derivada

Grafico Derivada

Mensagempor luanalcs » Qui Nov 10, 2011 06:22

Pessoal

Estou tendo dificuldades para esboçar o gráfico da função a seguir:

f(x)=2x³+x-2

1º Passo: Derivada
f'(x)=6x²+1

2º Passo: Pontos críticos (mínimos e máximos)
f'(x)=0
6x²+1=0
6x²=-1
x²=-1/6
x=+-1/6

3º Passo: Determinar pontos críticos
x= 1/6
f(x)=2x³+x-2
2*(0,1666)³+(0,1666)-2= 7 (1/6,7)

x= (-1/6)
f(x)=2x³+x-2
2*(-0,1666)³+(-0,1666)-2= -11 (1/6,-11)

4º Passo: Segunda derivada da função
f(x)=6x²+1
f"(x)=12x

5º Passo: Definir concavidade no ponto crítico
x= 1/6
f"(1/6)=12*1/6= 2 (Para cima)

x= -1/6
f"(-1/6)=12*(-1/6)= -2 (Para baixo)

6º Passo: Ponto de inflexão
f"(x)=0
12x=0
x=0

f(x)=2x³+x-2
f(0)= 2*0³+0-2= -2

Creio que esteja errada a montagem do gráfico, marquei (-1/6,-11) (1/6,7) (0,2).

Não consigo vizualizar aonde possa estar o erro.

Desde já agradeço
Editado pela última vez por luanalcs em Qui Nov 10, 2011 18:53, em um total de 1 vez.
luanalcs
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Nov 10, 2011 05:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias Economicas
Andamento: cursando

Re: Grafico Derivada

Mensagempor joaofonseca » Qui Nov 10, 2011 08:14

O erro está nos zeros da derivada.

6x^2+1=0

Não tem zeros reais.O vertice da parabola será um minimo.Com alguma atenção se verifica que a função pode ser escrita da seguite forma: 6f(x)+1 em que f(x)=x^2. Podemos concluir que o vertice da função elementar sofreu uma deslocação de 1 unidade para cima.Assim de (0,0) passou para (0,1). O fator de expanção 6, não afeta em nada o vertice da parabola.
Concluimos que se o minimo da parabola é (0,1) então não há zeros.Se a derivada não tem zeros e é positiva em todo o seu dominio, f(x) é estritamente crescente.

Todos os calculos posteriores que utilizam as falsas raizes da derivada estam errados.
Aqui fica uma fotografia:

derivadas.jpg
derivadas.jpg (15.1 KiB) Exibido 1519 vezes
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Grafico Derivada

Mensagempor LuizAquino » Qui Nov 10, 2011 11:58

Olá joaofonseca e luanalcs,

Já que a dúvida foi resolvida, gostaria apenas de deixar uma sugestão. Trata-se do programa GeoGebra, que com certeza pode ajudar muito nos seus estudos.

A página oficial desse programa é:
http://www.geogebra.org

Se vocês desejarem, no meu canal no YouTube tem um conjunto de tutoriais sobre esse programa. O endereço é:
http://www.youtube.com/LCMAquino

Em particular, eu recomendo o vídeo tutorial "10. Curso de GeoGebra - Funções".

Por fim, se vocês precisarem fazer uma revisão, no meu canal também há uma vídeo-aula tratando sobre a construção de gráficos: "22. Cálculo I - Construção de Gráficos".
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?