• Anúncio Global
    Respostas
    Exibições
    Última mensagem

( Regra da Cadeia ) - Cálculo II

( Regra da Cadeia ) - Cálculo II

Mensagempor Marimar » Qui Nov 03, 2011 14:38

Oi pessoal,

Vou tentar explicar o que eu tentei fazer no seguinte exercício, e queria que alguém pudesse me ajudar a concluí-lo.

Admita que, para todo (x,y)

4y. df/dx (x,y) - x df/dy(x,y) = 2

Calcule g' (t), sendo g(t) = f( 2cost, sent).



Chamei x= 2cost y= sent

peguei a equação e integrei 4y e x e deu a seqguinte equação: x^2/2 + 2y^2 = 2
tentei fazer algumas substituições mas nada deu certo, acabei chegando a lugar algum.

se possível, ajudem. Obrigada.
Marimar
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Nov 03, 2011 14:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: ( Regra da Cadeia ) - Cálculo II

Mensagempor Igor Mirandola » Sex Nov 04, 2011 00:55

Vou supor que f eh uma função de R² em R, isso deveria ficar claro no enunciado...
vou supor ainda que (x,y) leva a f(x,y)...

Admitindo que, para todo (x,y)
4y. df/dx (x,y) - x df/dy(x,y) = 2

Calcule g' (t), sendo g(t) = f( 2cost, sent).
Agora observe que g(t) é uma função R em R, onde para todo t leva-se ao valor g(t), pela lei g(t) = f(2cost, sent), g eh uma composta!
Existe uma função h(t) intermediária, tal que para cada valor de t, eh associado a um h(t) = ( 2cost, sent)
Dessa forma, minha g(t) nada mais é do que uma f(h(t)).
Nesta função x = x(t) e y = y(t)

Acredito que a regra da cadeira será dada por:
dg/dt = df/dx dx/dt + df/dx dy/dt
Podemos determinar dx/dt = d(2cos(t))/dt = - 2 sen(t)
Podemos determinar dy/dt = d(sent)/dt = cos(t)

Assim,
dg/dt = -2 sent df/dx + cost df/dy
Também vamos lembrar que temos por hipotese que 4y. df/dx (x,y) - x df/dy(x,y) = 2

Mas não consigo unir as duas equações!!!
Falta algum dado?
Igor Mirandola
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Out 28, 2011 21:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: ( Regra da Cadeia ) - Cálculo II

Mensagempor LuizAquino » Dom Nov 06, 2011 12:32

Igor Mirandola escreveu:Assim,
dg/dt = -2 sent df/dx + cost df/dy
Também vamos lembrar que temos por hipotese que 4y. df/dx (x,y) - x df/dy(x,y) = 2


Note que se x=2\cos t e y = \textrm{sen}\,t, então:

4y\frac{df(x,\,y)}{dx} - x\frac{df(x,\,y)}{dy} = 2 \Rightarrow 4 \,\textrm{sen}\,t\frac{df(x,\,y)}{dx} - 2\cos t\frac{df(x,\,y)}{dy} = 2

Dividindo esta última equação por -2, note que:

\left(4 \,\textrm{sen}\,t\frac{df(x,\,y)}{dx} - 2\cos t\frac{df(x,\,y)}{dy} = 2 \right) : (-2)  \Rightarrow -2 \,\textrm{sen}\,t\frac{df(x,\,y)}{dx} + \cos t\frac{df(x,\,y)}{dy} = -1

Portanto, podemos concluir que:

-2 \,\textrm{sen}\,t\frac{df(x,\,y)}{dx} + \cos t\frac{df(x,\,y)}{dy} = -1 \Rightarrow \frac{dg}{dt} = -1
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.