por Cleyson007 » Dom Mai 10, 2009 00:44
Olá, boa noite!!
Estou encontrando dificuldade na resolução do problema abaixo

Gostaria que alguém me auxiliasse. Desde já agradeço pela atenção
--> Em uma fazenda produtora de soja duas colheitadeiras A e B são utilizadas para a colheita da produção. Quando trabalham juntas conseguem fazer toda a colheita em 72 horas. Porém, utilizando apenas a colheitadeira A, em 120 horas. Se o produtor utilizar apenas a colheitadeira B, toda a colheita será feita em:
(A) 180 horas
(B) 165 horas
(C) 157 horas
(D) 192 horas
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por Molina » Seg Mai 11, 2009 05:36
Bom noite, Cleyson.
Passei um bom tempo nessa questão. Então, no momento que nao estava nem com o PC ligado, veio a

do exercício.
Primeiro de tudo eu coloquei uma medida qualquer para essa colheita, por exemplo: 100m²
Feito isso resolvi

para saber quanto m² as duas juntas colhiam por hora.
Próximo passo é saber quantos m² apenas a colheitadeira A colhe por hora:

Fazendo o resultado da primeira expressão, menos o resultado da segunda expressão obtive: 0,555555556
Ou seja, descobri que se eu pegar 100m² e dividir pela quantidade de horas que a colheitadeira B utiliza para colher a plantação toda sozinha teria resultado igual a 0,55555556. Em outras palavras:

.
Para o resultado ficar mais preciso, é melhor fazer toda a conta de uma vez numa calculadora.
Jogue esse valor
100/((100/72)-(100/120)) no google e veja que resultado aparece.
Lembrando que esse
100m² é genérico. Podia ser qualquer outro valor.
Agora vou pensar mais um pouquinho o exercício da piscina.
Grande abraço,

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Cleyson007 » Sáb Mai 30, 2009 17:14
Boa tarde Diego Molina, tudo bem?
Desculpe por não ter comentado nada ainda sobre a resolução... é porque estava desenvolvendo um outro método de resolvê-la. A minha resposta não está igual a sua

(só que não tenho gabarito), mas acho que faz sentido olha só..
Estou chamando de

o rendimento das máquinas.


O rendimento dá máquina

não é igual ao rendimento da máquina

, por esse motivo vou chamá-lo de

.

Daí,

![72(A+B)=120A
[tex]A+B=1,66A 72(A+B)=120A
[tex]A+B=1,66A](/latexrender/pictures/99e770bca0e4cb0431c7b0129a5f3062.png)



Não sei se está certo...
Acha que está certo?
Um abraço
Até mais
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por Marcampucio » Sáb Mai 30, 2009 17:51
As máquinas juntas fazem

do trabalho por hora. A segunda sozinha faz

por hora. A primeira sozinha faz:

levará

horas sozinha.
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
-
Marcampucio
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Ter Mar 10, 2009 17:48
- Localização: São Paulo
- Formação Escolar: GRADUAÇÃO
- Área/Curso: geologia
- Andamento: formado
por Molina » Sáb Mai 30, 2009 21:43
Boa noite.
Obrigado pela confirmação Marcampucio!
Cleyson, tente ver onde foi que você se equivocou.
Talvez na montagem de suas fórmulas...
Abraços e bom sábado.
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Cleyson007 » Seg Jun 08, 2009 13:25
Boa tarde Molina!
Realmente, devo ter cometido algum erro na montagem das minhas equações.
Vou ver se encontro o erro.
Qualquer coisa comento, ok?
--> Molina, lembra da questão dos nadadores na piscina? Depois dá uma olhada encontrei uma resposta.. penso que está correta
Até mais.
Um abraço.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
Voltar para Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.