• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral

Integral

Mensagempor jr_freitas » Seg Out 31, 2011 14:02

Boa tarde!
Podem me ajudar no seguinte exercício de integral?
\int u^1^,^1\left(1/3u-1 \right)du
Eu consigo chegar até essa parte, depois não sei o que faço:
\int u^2^,^1/2,1 \left(1/3 * 1/u - 1 \right)du, estou fazendo errado?...por favor me expliquem!
Obrigado!
jr_freitas
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Out 06, 2011 10:28
Formação Escolar: ENSINO MÉDIO
Área/Curso: Tecnólogo em Análise de Sistemas
Andamento: cursando

Re: Integral

Mensagempor MarceloFantini » Seg Out 31, 2011 15:05

Freitas, não é possível entender qual é a integral a ser calculada. Para utilizar fração, use o comando
Código: Selecionar todos
\frac{a}{b}
e o resultado será \frac{a}{b}. Para fazer um produto, use
Código: Selecionar todos
c \cdot d
e aparecerá c \cdot d.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integral

Mensagempor jr_freitas » Seg Out 31, 2011 15:49

Ok! Desculpe.
Não consigo resolver o seguinte exercício de Integral:
\int u^1^,^1\left(\frac{1}{3u}-1\right)du
Eu consigo chegar até essa parte, depois não sei o que faço:
\int\frac{u^2^,^1}{2,1} \left(\frac{1}{3}*\frac{1}{u}-1\right)du, (não sei se está certo).
Obrigado pela ajuda!
jr_freitas
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Out 06, 2011 10:28
Formação Escolar: ENSINO MÉDIO
Área/Curso: Tecnólogo em Análise de Sistemas
Andamento: cursando

Re: Integral

Mensagempor MarceloFantini » Seg Out 31, 2011 16:07

Se você aplicar a distributiva, verá que a integral fica \int u^{0,1} - u^{1,1} \, \textrm{d}u = \int u^{0,1} \, \textrm{d}u - \int u^{1,1} \, \textrm{d}u = \frac{u^{1,1}}{1,1} + \frac{u^{2,1}}{2,1} + C. É isso? Ainda não entendo porque apareceria um expoente fracionário.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integral

Mensagempor procyon » Ter Nov 01, 2011 00:16

\int u^{1,1}. \left( \frac{1}{3u} -1 \right).du \\
\\
\text{Distribuindo os fatores:} \\
\\
\int \left[ u^{1,1}. \frac{1}{3u} -1 . u^{1,1} \right]du\\
\\
\text{Distribuindo as potencias:} \\
\\
\int \left[ \frac{u^{1}.u^{0,1}}{3u}  -1 . u^{1,1} \right]du \\
\\
\text{Cortando o que puder e usando a propriedade da diferenca de uma integral:} \\
\\
\frac{1}{3} \int u^{0,1}.du - \int u^{1,1}du \\
\\
\text{Integrando temos:} \\
\\
\left[ \frac{1}{3} . \frac{u^{1,1}}{1,1}  - \frac{u^{2,1}}{2,1} \right] + C \\
\\
\text{E finalmente:} \\
\\
\frac{u^{1,1}}{3,3} - \frac{u^{2,1}}{2,1} + C

Seria isso ?
Espero que esteja certo..
procyon
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Out 31, 2011 23:40
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Integral

Mensagempor MarceloFantini » Ter Nov 01, 2011 03:34

De fato, esqueci o \frac{1}{3} multiplicando. Desculpe.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: