por igor44 » Seg Out 31, 2011 21:20
Boa noite,estou com uma dúvida em um exercício eu achei o ponto A e B mas não sei se é por esse caminho e depois não sei o que fazer gostaria de uma ajuda por favor.
segue o enunciado:
Seja r a reta 4x+7y-56=0 que intercepta o eixo das ordenadas no ponto A e o eixo das abscissas no ponto B.Considere uma reta s,que passa pela origem (0,0) e
intercepta a reta r no ponto C,de modo que a área do triângulo OCB seja igual à metade da área do triângulo OAC.
a)Determine as coordenadas do ponto C.
b)Encontre a equação da reta s.
-
igor44
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Out 31, 2011 21:09
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: economia
- Andamento: cursando
por procyon » Ter Nov 01, 2011 00:57
Ok, já que você não deixou claro como tentou, vou colocar a resolução de modo indicado:
Letra a):
Você tem que achar as áreas de cada triângulo a partir das matrizes com as coordenadas dos 3 pontos, sendo o ponto C com valores simbólicos (Pode chamar de Xc e Yc). Lembre-se que a área do triângulo é 1/2 da matriz 3x3 que contém os pontos e o número 1 em todas as linhas da última coluna
Depois faça:
area do triangulo 1 = metade da area do triangulo 2 , as duas áreas estarão em função das coordenadas X e Y do ponto C.
Depois encontre o ponto de intersecção da reta que passa pela origem com a reta R que você acabou de achar a equação, depois disso é só mecher os pauzinhos...
-
procyon
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Seg Out 31, 2011 23:40
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida em exercício - Equação da reta
por Danilo » Qui Mai 24, 2012 05:11
- 5 Respostas
- 3757 Exibições
- Última mensagem por Danilo

Sáb Mai 26, 2012 18:59
Geometria Analítica
-
- Exercício sobre equação da reta - Dúvida
por Danilo » Seg Mai 07, 2012 00:28
- 2 Respostas
- 1828 Exibições
- Última mensagem por Danilo

Dom Mai 13, 2012 22:38
Geometria Analítica
-
- Dúvida em exercício sobre equação da reta
por Danilo » Dom Mai 13, 2012 22:05
- 6 Respostas
- 3190 Exibições
- Última mensagem por Danilo

Qua Mai 16, 2012 01:19
Geometria Analítica
-
- Duvida em exercício {equação da reta/perpendicularismo}
por Danilo » Qui Jun 14, 2012 06:15
- 2 Respostas
- 1731 Exibições
- Última mensagem por Danilo

Sáb Jun 16, 2012 03:22
Geometria Analítica
-
- [Ângulo - reta e plano] Dúvida exercício
por MrJuniorFerr » Sex Out 12, 2012 11:51
- 6 Respostas
- 4394 Exibições
- Última mensagem por MarceloFantini

Sex Out 12, 2012 20:18
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.