por beel » Dom Out 30, 2011 17:51
![\lim_{x\rightarrow\infty}[(e^x + x)]^\frac{2}{x} \lim_{x\rightarrow\infty}[(e^x + x)]^\frac{2}{x}](/latexrender/pictures/25e7f1e60b8fd2aebee835047bebdb98.png)
nesse limite, a função exponencial por ser continua "dá passagem' pro limite?
fiz baseado nisso e meu resultado deu e²
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por LuizAquino » Dom Out 30, 2011 18:24
beel escreveu:
nesse limite, a função exponencial por ser continua "dá passagem' pro limite?
fiz baseado nisso e meu resultado deu e²
O resultado desse limite é esse. Mas envie o seu desenvolvimento para que possamos verificar se ele está correto.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por beel » Dom Out 30, 2011 18:47
![\lim_{x\rightarrow\infty}exp[ln( e^x + x)]^\frac{2}{x}=
exp (\lim_{x\rightarrow\infty} [ln(e^x + x)]\frac{2}{x}=
exp (\lim_{x\rightarrow\infty} [ln(e^x + x)\frac{x}{2}=
exp (\lim_{x\rightarrow\infty} (\frac{[ln(e^x + x)]\prime}{(\frac{x}{2}\prime)}=
exp (\lim_{x\rightarrow\infty} \frac{\frac{e^x + 1}{e^x + x}}{\frac{1}{2}})=
exp (\lim_{x\rightarrow\infty}\frac{2(e^x + 1)}{e^x + x})= \lim_{x\rightarrow\infty}exp[ln( e^x + x)]^\frac{2}{x}=
exp (\lim_{x\rightarrow\infty} [ln(e^x + x)]\frac{2}{x}=
exp (\lim_{x\rightarrow\infty} [ln(e^x + x)\frac{x}{2}=
exp (\lim_{x\rightarrow\infty} (\frac{[ln(e^x + x)]\prime}{(\frac{x}{2}\prime)}=
exp (\lim_{x\rightarrow\infty} \frac{\frac{e^x + 1}{e^x + x}}{\frac{1}{2}})=
exp (\lim_{x\rightarrow\infty}\frac{2(e^x + 1)}{e^x + x})=](/latexrender/pictures/bee2d00a85fa7dbcde76094890df19b6.png)
continua...
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por beel » Dom Out 30, 2011 18:58
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LIMITE]LIMITE FUNDAMENTAL EXPONENCIAL
por beel » Sáb Set 03, 2011 22:11
- 3 Respostas
- 2307 Exibições
- Última mensagem por beel

Dom Set 04, 2011 17:25
Cálculo: Limites, Derivadas e Integrais
-
- Limite com Exponencial
por Thyago Quimica » Qui Mai 24, 2012 17:44
- 1 Respostas
- 995 Exibições
- Última mensagem por LuizAquino

Qui Mai 24, 2012 22:03
Cálculo: Limites, Derivadas e Integrais
-
- Limite exponencial
por Jhennyfer » Qua Mai 14, 2014 20:07
- 5 Respostas
- 2727 Exibições
- Última mensagem por e8group

Sex Mai 16, 2014 13:09
Cálculo: Limites, Derivadas e Integrais
-
- limite envolvendo exponencial
por renat » Dom Jun 11, 2017 20:37
- 0 Respostas
- 2756 Exibições
- Última mensagem por renat

Dom Jun 11, 2017 20:37
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITES] Limite fundamental Exponencial
por antonelli2006 » Ter Set 20, 2011 05:54
- 1 Respostas
- 1979 Exibições
- Última mensagem por LuizAquino

Ter Set 20, 2011 12:22
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.