• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Número de Euler

[Limite] Número de Euler

Mensagempor Aliocha Karamazov » Sex Out 28, 2011 20:16

Ao ler a seguinte demonstração:

Verifique que \lim_{x\to-\infty}\left(1+\frac{1}{x}\right)^x=e
Solução:
Fazendo x=-(t+1), t>0

\left(1+\frac{1}{x}\right)^x=\left(1-\frac{1}{1+t}\right)^{-t-1}=\left(1+\frac{1}{t}\right)^{t}\frac{t+1}{t}

Para x\to-\infty, t\to\infty, assim:

\lim_{x\to-\infty}\left(1+\frac{1}{x}\right)^x=\lim_{t\to\infty}\left(1+\frac{1}{t}\right)^t=e

Eu não entendi por que

\left(1-\frac{1}{1+t}\right)^{-t-1}=\left(1+\frac{1}{t}\right)^{t}\frac{t+1}{t}

Alguém poderia me ajudar?
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: [Limite] Número de Euler

Mensagempor Igor Mirandola » Sex Out 28, 2011 21:55

Vamos fazer primeiro a seguinte conta:
{\left(1 - \frac{1}{1+t} \right)}^{-t} = {\left(\frac{1+t}{1+t} - \frac{1}{1+t} \right)}^{-t} = {\left(\frac{t}{1+t} \right)}^{-t} = {\left(\frac{1+t}{t} \right)}^{t} = {\left(\frac{1}{t} + \frac{t}{t} \right)}^{t} = {\left(1 + \frac{1}{t} \right)}^{t}
Realizando praticamente as mesmas operações:
{\left(1 - \frac{1}{1+t} \right)}^{-1} = {\left(\frac{1+t}{1+t} - \frac{1}{1+t} \right)}^{-1} = {\left(\frac{t}{1+t} \right)}^{-1} = {\left(\frac{1+t}{t} \right)}^{1}

Sabendo que
{\left(1 - \frac{1}{1+t} \right)}^{-t-1} = {\left(1 - \frac{1}{1+t} \right)}^{-t} {\left(1 - \frac{1}{1+t} \right)}^{-1}

Concluímos que
{\left(1 - \frac{1}{1+t} \right)}^{-t-1} = {\left(1 + \frac{1}{t} \right)}^{t} {\left(\frac{1+t}{t} \right)}^{1}
Igor Mirandola
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Out 28, 2011 21:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limite] Número de Euler

Mensagempor Aliocha Karamazov » Sex Out 28, 2011 22:46

Obrigado pela ajuda!
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: