Por gentileza, alguém pode me ajudar nessa resolução:
Demonstre que:
1.2+2.3+3.4+...+n(n+1) = n.(n+1).(n+2)/3 , para n natural
(Dica) estude demonstrações por indução finita.

silvia fillet escreveu:Por gentileza, alguém pode me ajudar nessa resolução:
Demonstre que:
1.2+2.3+3.4+...+n(n+1) = n.(n+1).(n+2)/3 , para n natural
(Dica) estude demonstrações por indução finita.





MarceloFantini escreveu:Não entendi muito bem o que você fez para a indução, a demonstração para o primeiro caso está certa. Aqui vai:
Que prova a veracidade.

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
zig escreveu:

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.