por vanessa134 » Seg Out 17, 2011 01:06
1) Quais números inteiros positivos menores que 120 podem ser escritos como soma de duas ou mais potencias distintas de base 3 e expoente inteiro maiores do que zero? Porr exemplo, 12=3² + 3¹ é o mesmo número deste tipo mas 18=3² + 3² não é.
2)Por defnição temos que todo número inteiro n maior do que 1 admite pelo menos um divisor primo. Se n é primo, então tem somente dois divisores, a saber, 1 e n. Se n é uma potencia de um primo, ou seja, é da forma p^s, então 1, p,p², ..., p^s são os divisores positivos de n. Calcule a soma dos numeros inteiros positivos menores do que 120, que tem exatamente 3 divisores positivos.
Obrigada
Vanessa
-
vanessa134
- Usuário Ativo

-
- Mensagens: 21
- Registrado em: Seg Out 17, 2011 00:02
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvidas
por Adriana Barbosa » Seg Jun 01, 2009 11:01
- 1 Respostas
- 1662 Exibições
- Última mensagem por Molina

Ter Jun 02, 2009 07:00
Funções
-
- duvidas e + duvidas
por sukita » Ter Out 05, 2010 22:22
- 1 Respostas
- 1601 Exibições
- Última mensagem por MarceloFantini

Ter Out 05, 2010 22:31
Progressões
-
- Duvidas
por Paulo A G » Qua Jan 26, 2011 14:45
- 1 Respostas
- 2910 Exibições
- Última mensagem por Molina

Qua Jan 26, 2011 15:09
Pedidos de Materiais
-
- 2 dúvidas
por analuiza » Qui Fev 17, 2011 23:14
- 1 Respostas
- 2649 Exibições
- Última mensagem por Molina

Sex Fev 18, 2011 13:33
Trigonometria
-
- Dúvidas D:
por Aliiine » Seg Out 24, 2011 11:12
- 1 Respostas
- 1957 Exibições
- Última mensagem por jose henrique

Seg Out 24, 2011 22:47
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.