por wadson leite » Qua Out 12, 2011 15:53
estava estudando para minha prova de calculo nesta sexta e estou com dúvidas que acho que podem ser básicas, ou não...
por isso estou aqui postando minhas duas dúvidas por enquanto:

![\lim_{x\rightarrow +\infty}\frac{\sqrt[2]{x^2+1}}{3x+2} \lim_{x\rightarrow +\infty}\frac{\sqrt[2]{x^2+1}}{3x+2}](/latexrender/pictures/7f7eee5372d8be1135c5f6736c82138d.png)
bom no primeiro caso eu comecei tentando divisão de polinômios, mas me enrolei..
aí tentei dividir o numerado e o denominador pelo fator de maior grau, no caso x^7; só que aí no denominador ficaria 0, já que todos os fatores iriam tender a 0;
briot rufini eu nem tentei e não sei nem como começar a fatorar esse negócio...
no segundo caso, tentei usar o conjugado, mas não cheguei em lugar nenhum e multiplicar por um fator igual a 1 tbm não deu em nada..
não sei o que fazer..
se eu conseguir entender esses dois casos, já é metade do caminho andado pra eu entender a lista que tenho que resolver..
obrigado
-
wadson leite
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Out 31, 2009 16:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em fisica
- Andamento: cursando
por joaofonseca » Qua Out 12, 2011 20:29
Intuitivamente digo-te que o primeiro exemplo tende para

.Basta observar que o grau do numerado é maior que o grau do denominador. Se o sinal negativo dos coeficientes de maior grau atrapalham, experimenta tira-los para fora, alterando os sinais dos restantes termos.
No segundo caso é necessário fazer uma nota prévia.Todos sabemos que

e que se

então podemo-nos limitar à parte positiva de

, ou seja
x.
Então:

Agora dividimos o numerador por

e o denominador por
x, pelas razões que indiquei antes.




-
joaofonseca
- Colaborador Voluntário

-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por wadson leite » Qua Out 12, 2011 22:25
sim entendo que o numerador é de grau maior que o denominador, e entendo que tende a infinito, mas qual é o limite?
lembrando que não posso usar l'hospital e nem tabela.
eu acredito que tenha alguma forma de dividir o numerado pelo denominador ou então simplificar a expressão. e quanto ao segundo caso, muito obrigado pela resposta...
entendi onde eu estava errando..
-
wadson leite
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Out 31, 2009 16:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em fisica
- Andamento: cursando
por LuizAquino » Qua Out 12, 2011 22:42
wadson leite escreveu:sim entendo que o numerador é de grau maior que o denominador, e entendo que tende a infinito, mas qual é o limite?
Note que:


Quando

, temos que o numerador dessa fração tende para -5, enquanto que o denominador tende para 0 (porém se aproximando por valores negativos). Desse modo, o resultado final será:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por wadson leite » Qua Out 12, 2011 23:39
obrigado.. agora entendi..
-
wadson leite
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Out 31, 2009 16:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em fisica
- Andamento: cursando
por wadson leite » Qui Out 13, 2011 09:54
joaofonseca escreveu:No segundo caso é necessário fazer uma nota prévia.Todos sabemos que

e que se

então podemo-nos limitar à parte positiva de

, ou seja
x.
Então:

Agora dividimos o numerador por

e o denominador por
x, pelas razões que indiquei antes.




tá e se eu colocar tendendo a menos infinito posso usar a mesma analogia:

e dividir o numerador por

e o denominador por -x
fazendo a equação ficar dessa forma:




estaria certo?
-
wadson leite
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Out 31, 2009 16:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em fisica
- Andamento: cursando
por wadson leite » Sex Out 14, 2011 16:39
ninguém???
-
wadson leite
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Out 31, 2009 16:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em fisica
- Andamento: cursando
por joaofonseca » Sex Out 21, 2011 10:35
Fazendo a mesma analogia, claro.
Repara que a função modulo/valor absoluto, pode ser defenida por ramos da seguinte forma:

-
joaofonseca
- Colaborador Voluntário

-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por wadson leite » Sex Out 21, 2011 11:28
obrigado, joão
-
wadson leite
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Out 31, 2009 16:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em fisica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [limites] reciso de ajuda nessa questão de limites raiz quad
por alexia » Ter Nov 15, 2011 19:55
- 1 Respostas
- 5002 Exibições
- Última mensagem por LuizAquino

Qua Nov 16, 2011 15:16
Cálculo: Limites, Derivadas e Integrais
-
- [Limites]Preciso de ajuda para calcular alguns limites
por Pessoa Estranha » Ter Jul 16, 2013 17:15
- 2 Respostas
- 4323 Exibições
- Última mensagem por LuizAquino

Qua Jul 17, 2013 09:12
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Ajuda com limites no infinito e continuidade
por umbrorz » Dom Abr 15, 2012 00:54
- 3 Respostas
- 4574 Exibições
- Última mensagem por umbrorz

Seg Abr 16, 2012 11:46
Cálculo: Limites, Derivadas e Integrais
-
- [limites] exercicio de calculo envolvendo limites
por lucasdemirand » Qua Jul 10, 2013 00:45
- 1 Respostas
- 4080 Exibições
- Última mensagem por e8group

Sáb Jul 20, 2013 13:08
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Dúvida sobre limites laterais
por Subnik » Sáb Abr 04, 2015 18:24
- 1 Respostas
- 2660 Exibições
- Última mensagem por DanielFerreira

Dom Abr 12, 2015 16:10
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.