• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites

Limites

Mensagempor wadson leite » Qua Out 12, 2011 15:53

estava estudando para minha prova de calculo nesta sexta e estou com dúvidas que acho que podem ser básicas, ou não...
por isso estou aqui postando minhas duas dúvidas por enquanto:
\lim_{x\rightarrow +\infty}\frac{x^3-5x^7+10}{-x^6-x^5+1}
\lim_{x\rightarrow +\infty}\frac{\sqrt[2]{x^2+1}}{3x+2}

bom no primeiro caso eu comecei tentando divisão de polinômios, mas me enrolei..
aí tentei dividir o numerado e o denominador pelo fator de maior grau, no caso x^7; só que aí no denominador ficaria 0, já que todos os fatores iriam tender a 0;
briot rufini eu nem tentei e não sei nem como começar a fatorar esse negócio...

no segundo caso, tentei usar o conjugado, mas não cheguei em lugar nenhum e multiplicar por um fator igual a 1 tbm não deu em nada..
não sei o que fazer..
se eu conseguir entender esses dois casos, já é metade do caminho andado pra eu entender a lista que tenho que resolver..

obrigado
wadson leite
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Out 31, 2009 16:26
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em fisica
Andamento: cursando

Re: Limites

Mensagempor joaofonseca » Qua Out 12, 2011 20:29

Intuitivamente digo-te que o primeiro exemplo tende para +\infty.Basta observar que o grau do numerado é maior que o grau do denominador. Se o sinal negativo dos coeficientes de maior grau atrapalham, experimenta tira-los para fora, alterando os sinais dos restantes termos.

No segundo caso é necessário fazer uma nota prévia.Todos sabemos que \sqrt{x^2}=\left | x \right | e que se x\mapsto+\infty então podemo-nos limitar à parte positiva de \left | x \right |, ou seja x.

Então:

\lim_{x\rightarrow +\infty}\frac{\sqrt{x^2+1}}{3x+2}

Agora dividimos o numerador por \sqrt{x^2} e o denominador por x, pelas razões que indiquei antes.

\lim_{x\rightarrow +\infty}\frac{\sqrt{\frac{x^2+1}{x^2}}}{\frac{3x+2}{x}}{

\lim_{x\rightarrow +\infty}\frac{\sqrt{1+\frac{1}{x^2}}}{3+\frac{2}{x}}{

\lim_{x\rightarrow +\infty}\frac{\sqrt{1+0}}{3+0}{

\lim_{x\rightarrow +\infty}\frac{1}{3}=\frac{1}{3}
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Limites

Mensagempor wadson leite » Qua Out 12, 2011 22:25

sim entendo que o numerador é de grau maior que o denominador, e entendo que tende a infinito, mas qual é o limite?
lembrando que não posso usar l'hospital e nem tabela.
eu acredito que tenha alguma forma de dividir o numerado pelo denominador ou então simplificar a expressão. e quanto ao segundo caso, muito obrigado pela resposta...
entendi onde eu estava errando..
wadson leite
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Out 31, 2009 16:26
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em fisica
Andamento: cursando

Re: Limites

Mensagempor LuizAquino » Qua Out 12, 2011 22:42

wadson leite escreveu:sim entendo que o numerador é de grau maior que o denominador, e entendo que tende a infinito, mas qual é o limite?


Note que:

\lim_{x\to +\infty}\frac{x^3-5x^7+10}{-x^6-x^5+1} = \lim_{x\to +\infty}\frac{\left(x^3-5x^7+10\right):x^7}{\left(-x^6-x^5+1\right):x^7}

= \lim_{x\to +\infty}\frac{\frac{1}{x^4} - 5 + \frac{10}{x^7}}{-\frac{1}{x} - \frac{1}{x^2} + \frac{1}{x^7}}

Quando x\to +\infty, temos que o numerador dessa fração tende para -5, enquanto que o denominador tende para 0 (porém se aproximando por valores negativos). Desse modo, o resultado final será:

\lim_{x\to +\infty}\frac{x^3-5x^7+10}{-x^6-x^5+1} = +\infty
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limites

Mensagempor wadson leite » Qua Out 12, 2011 23:39

obrigado.. agora entendi..
wadson leite
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Out 31, 2009 16:26
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em fisica
Andamento: cursando

Re: Limites

Mensagempor wadson leite » Qui Out 13, 2011 09:54

joaofonseca escreveu:No segundo caso é necessário fazer uma nota prévia.Todos sabemos que \sqrt{x^2}=\left | x \right | e que se x\mapsto+\infty então podemo-nos limitar à parte positiva de \left | x \right |, ou seja x.

Então:
\lim_{x\rightarrow +\infty}\frac{\sqrt{x^2+1}}{3x+2}

Agora dividimos o numerador por \sqrt{x^2} e o denominador por x, pelas razões que indiquei antes.

\lim_{x\rightarrow +\infty}\frac{\sqrt{\frac{x^2+1}{x^2}}}{\frac{3x+2}{x}}{

\lim_{x\rightarrow +\infty}\frac{\sqrt{1+\frac{1}{x^2}}}{3+\frac{2}{x}}{

\lim_{x\rightarrow +\infty}\frac{\sqrt{1+0}}{3+0}{

\lim_{x\rightarrow +\infty}\frac{1}{3}=\frac{1}{3}


tá e se eu colocar tendendo a menos infinito posso usar a mesma analogia:
\lim_{x\rightarrow -\infty}\frac{\sqrt{x^2+1}}{3x+2}
e dividir o numerador por \sqrt{x^2} e o denominador por -x
fazendo a equação ficar dessa forma:
\lim_{x\rightarrow -\infty}\frac{\sqrt{\frac{x^2+1}{x^2}}}{\frac{3x+2}{-x}}{
\lim_{x\rightarrow -\infty}\frac{\sqrt{1+\frac{1}{x^2}}}{-3-\frac{2}{x}}{
\lim_{x\rightarrow -\infty}\frac{\sqrt{1+0}}{-3-0}{
\lim_{x\rightarrow -\infty}\frac{-1}{3}=\frac{-1}{3} estaria certo?
wadson leite
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Out 31, 2009 16:26
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em fisica
Andamento: cursando

Re: Limites

Mensagempor wadson leite » Sex Out 14, 2011 16:39

ninguém???
wadson leite
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Out 31, 2009 16:26
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em fisica
Andamento: cursando

Re: Limites

Mensagempor joaofonseca » Sex Out 21, 2011 10:35

Fazendo a mesma analogia, claro.
Repara que a função modulo/valor absoluto, pode ser defenida por ramos da seguinte forma:

f(x)=\left\{\begin{matrix}
-x, & x<   0  & \\
&\\
x,&  x\geq  0  & 
\end{matrix}\right
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Limites

Mensagempor wadson leite » Sex Out 21, 2011 11:28

obrigado, joão
wadson leite
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Out 31, 2009 16:26
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em fisica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?