• Anúncio Global
    Respostas
    Exibições
    Última mensagem

expressão algébrica

expressão algébrica

Mensagempor Gustavo R » Sáb Out 08, 2011 16:33

alguém poderia me explicar (passo a passo!) porque nesta operação o resultado é o obtido? obrigado por ajudar e até mais!

\frac{a}{2} \times \frac{x}{{a}^{2}} = \frac{x}{2a}
Gustavo R
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Ago 12, 2011 19:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: expressão algébrica

Mensagempor LuizAquino » Dom Out 09, 2011 09:03

Gustavo R escreveu:alguém poderia me explicar (passo a passo!) porque nesta operação o resultado é o obtido?

\frac{a}{2} \times \frac{x}{{a}^{2}} = \frac{x}{2a}


Passo 1
Multiplique os numeradores e multiplique os denominadores:

\frac{a}{2} \times \frac{x}{{a}^{2}} = \frac{ax}{2a^2}

Passo 2
Efetue a simplificação da fração dividindo o numerador e o denominador por a:

\frac{ax}{2a^2} = \frac{(ax) : a}{\left(2a^2\right) : a} = \frac{x}{2a}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}