• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sistemas Lineares] Precisão do Método de Gauss-Seidel

[Sistemas Lineares] Precisão do Método de Gauss-Seidel

Mensagempor VFernandes » Qui Out 06, 2011 13:50

Caros amigos, primeiramente peço desculpas se o assunto foge um pouco do tema, mas foi a seção mais adequada que encontrei.
Tenho o seguinte problema em minhas mãos:
\begin{pmatrix}
   4 & -1 & 0  \\
   -2 & 3 & -1 \\ 
   -1 & -3 & 5
\end{pmatrix} \begin{pmatrix}
   {x}_{1}} \\
   {x}_{2}} \\ 
   {x}_{3}}
\end{pmatrix} =  \begin{pmatrix}
   2\\
   0 \\ 
   1
\end{pmatrix}
Calcule uma iteração por Gauss-Seidel, partindo de = (0,0,0) e estime quantas iterações são necessárias para que se atinja a precisão \epsilon = 0.0001
Bom, vamos lá:

{{x}_{1}}^{1} = \frac{1}{4}(2-(-1)\times0-0\times0)) = 0,5
{{x}_{2}}^{1} = \frac{1}{3}(0-(-2)\times0,5-(-1)\times0)) = 0,33
{{x}_{3}}^{1} = \frac{1}{5}(1-(-1)\times0,5-(-3)\times0,33)) = 0,5

\beta_1 = \frac{1}{4}(1+0) = 0,25
\beta_ = \frac{1}{3}(2\times0,25+1) = 0,5
\beta_3 = \frac{1}{5}(2\times0,25+3\times0,5) = 0,4 portanto,
M = 0.5 (maior dos betas)
Até aqui, sem problemas, a questão vem agora:
Sabemos que:
|x^*-x^k|\leq M^k max|x^*-x^0| portanto,
0.0001\leq 0,5^k |x^*-0|
o que não nos ajuda em muito, pois não sabemos x* (valor exato de x)
Alguma alma caridosa saberia como lidar com isso? Será que temos que delimitar um intervalo onde está contida a solução do sistema?
VFernandes
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mar 04, 2011 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando

Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.