• Anúncio Global
    Respostas
    Exibições
    Última mensagem

dá uma luz pra mim?!!!!!!!!!!!

dá uma luz pra mim?!!!!!!!!!!!

Mensagempor zig » Ter Set 27, 2011 15:23

Seja a função f: R\rightarrowR, F(x)= x+3, então, qual o gráfico que melhor representaria a função, g: R\rightarrowR, G(x) = 5 - f(x),?
me explica passo a passo como chegar a tal conclusão.
zig
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Sex Fev 18, 2011 18:50
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: dá uma luz pra mim?!!!!!!!!!!!

Mensagempor Neperiano » Ter Set 27, 2011 16:37

Ola

Primeiro susbtitua o f(x) na equação g(x), ficará 5 - (x+3), ou seja g(x) = 2-x

Agora é só montar o gráfico, chute valores para x, tipo -2,-1,0,1,2 e veja quanto dá o g(x) ou y, como preferir

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Funções

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}