• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITES] Limite fundamental Exponencial

[LIMITES] Limite fundamental Exponencial

Mensagempor antonelli2006 » Ter Set 20, 2011 05:54

Olá galera (novamente), tenho vindo bastante aqui no fórum pois tenho prova de Cálculo I na quarta-feira (22) e preciso sanar algumas dúvidas!
Agradeço pelo auxílio de todos... Voltando ao assunto...!

O seguinte limite está para ser calculado:

\lim_{x\rightarrow0} \frac{3^x-1}{x^2}

De acordo com minhas tentativas, não existe limite desta função no ponto 0, pois \lim_{x\rightarrow0+} \ne \lim_{x\rightarrow0-}, segue o que fiz:

\lim_{x\rightarrow0} \frac{3^x-1}{x^2} = \lim_{x\rightarrow0} \frac{3^x-1}{x}.\frac{1}{x}

Elimino o limite fundamental, que é igual a ln(3), porém \frac{1}{x} não tem limites laterais iguais, portanto não há limites, correto?

\lim_{x\rightarrow0+} = \frac{1}{0+} = +\infty
\lim_{x\rightarrow0-} = \frac{1}{0-} = -\infty

Porém no gabarito (não sei de qual livro), a professora colocou a resposta como +\infty, há essa possibilidade?

Grande abraço à todos.
antonelli2006
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Set 17, 2011 05:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Controle e Automação
Andamento: cursando

Re: [LIMITES] Limite fundamental Exponencial

Mensagempor LuizAquino » Ter Set 20, 2011 12:22

antonelli2006 escreveu:Porém no gabarito (não sei de qual livro), a professora colocou a resposta como +\infty, há essa possibilidade?


Para a resposta ser essa que consta no gabarito, o exercício deveria ser para calcular \lim_{x\to 0^+} \frac{3^x-1}{x^2} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}