• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE]raiz/ duvida

[LIMITE]raiz/ duvida

Mensagempor beel » Dom Set 11, 2011 15:09

\lim_{x\rightarrow \infty}x(\sqrt[]{x^2-1} - x )

Meu resultado deu zero, mas estou muito em duvida...
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE]raiz/ duvida

Mensagempor MarceloFantini » Dom Set 11, 2011 19:59

Note que f(x) = x(\sqrt{x^2 -1} - x) = x(\sqrt{x^2 -1} -x) \cdot \frac{(\sqrt{x^2 -1} + x)}{(\sqrt{x^2 -1} +x)} = \frac{x(x^2 -1 -x^2)}{\sqrt{x^2 -1} +x} =

\frac{-x}{x \sqrt{1 - \frac{1}{x^2}} +x} = \frac{-1}{\sqrt{1 - \frac{1}{x^2}} +1}

Portanto \lim_{x \to \infty} f(x) = \frac{1}{2}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [LIMITE]raiz/ duvida

Mensagempor beel » Dom Set 11, 2011 20:25

Nao entendi essa parte
\frac{-x}{x \sqrt{1 - \frac{1}{x^2}} +x}


Voce colocou o x em evidencia? o que voce fez?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE]raiz/ duvida

Mensagempor MarceloFantini » Seg Set 12, 2011 01:00

Sim, eu coloquei o x em evidência no denominador para cancelar com o numerador, usando que x = \sqrt{x^2} quando x é positivo (que não precisamos nos preocupar já que está indo para infinito).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [LIMITE]raiz/ duvida

Mensagempor beel » Sáb Set 17, 2011 19:17

o resultado nao seria negativo?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE]raiz/ duvida

Mensagempor MarceloFantini » Sáb Set 17, 2011 19:26

O sinal passou despercebido, desculpe.

\lim_{x \to \infty} f(x) = - \frac{1}{2}
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [LIMITE]raiz/ duvida

Mensagempor beel » Dom Out 16, 2011 16:59

Tudo bem,obrigada.
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)