• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[juros simples] taxa de rentabilidade mensal

[juros simples] taxa de rentabilidade mensal

Mensagempor Tito » Sáb Set 10, 2011 03:27

Olá pessoal,
eu achei a questão abaixo um pouco confusa, mas eu deduzi da seguinte maneira:

(FT-ES) Um banco comercial empresta R$ 10.000 a um cliente, pelo prazo de tres meses, com uma taxa de 5% ao mes, juros simples, cobrados antecipadamente. Dessa forma, o valor liquido liberado pelo banco é de R$ 8.500 e o cliente deve pagar os R$ 10.000 no final do terceiro mes. Além disso, o banco exige um saldo médio de R$ 1.000 ao longo de todo o prazo do empréstimo. Com base nestas informações podemos afirmar que a taxa de rentabilidade mensal do banco nessa operação, a juros simples é...

Eu deduzi que se o banco exige um saldo médio de 1000 ao longo do prazo, então o montante final é de 11.000, portanto os juros serão de 1500 + 1000. Depois eu calculei a taxa média, mas essa não é a resposta certa.

J=2500
J=p%C
2500=p%8500
p%=0,294 = 29,4%

p%=i x t
29,4% = i x 3
i=9,8

im=taxa média
im=[8500x5x3 + 8500x9,8x3] / [8500x3 +8500x3]=
=[377.400] / [51.000]=
=7,4%

Resposta correta: 6,67%

Obrigado.
Tito
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Ago 21, 2011 05:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Farmacêutico
Andamento: formado

Re: [juros simples] taxa de rentabilidade mensal

Mensagempor Tito » Sáb Set 17, 2011 16:13

Como o problema pede para deixar R$ 1.000 de saldo então, não se pode retirar todo o saldo do emprestimo do banco:

C = 8.500 - 1000 = 7.500
M = 10.000 - 1000 = 9.000
T = 3 meses

M = C x F
9.000 = 7.500 x F
Fator de correção = 1.2 = 20%
p%=porcentagem de juros da operação

P%= i x T
20% = i x 3
i = 6,66%
Tito
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Ago 21, 2011 05:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Farmacêutico
Andamento: formado


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D