• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcular Derivada ln(secx+tgx)

Calcular Derivada ln(secx+tgx)

Mensagempor shantziu » Seg Set 05, 2011 16:55

Boa tarde galera,

o problema é o seguinte

estou em uma questão, e está pedindo para provar que \int_{}^{}secx = ln(secx+tgx)+c

pra eu provar isso eu sei que tenho que calcular essa derivada: ln(secx+tgx)

só que não estou conseguindo achar o resultado secx, por isso peço ajuda dos senhores.
shantziu
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Set 05, 2011 16:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Computação
Andamento: cursando

Re: Calcular Derivada ln(secx+tgx)

Mensagempor MarceloFantini » Seg Set 05, 2011 17:43

Use a regra da cadeia: (\ln (\sec x + \tan x))' = \frac{1}{\sec x + \tan x} \cdot (\sec x + \tan x)' =

= \frac{1}{\sec x + \tan x} \cdot (\tan x \sec x + \sec^2 x) = \sec x \cdot \left( \frac{\tan x + \sec x}{\sec x + \tan x} \right)
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Calcular Derivada ln(secx+tgx)

Mensagempor LuizAquino » Seg Set 05, 2011 20:12

Bem, é evidente que uma forma de provar é derivar \ln |\sec x + \,\textrm{tg}\,x| + c e verificar se o resultado é \sec x .

Entretanto, se não fosse fornecido o resultado da integral, então como você provaria?

No caso da integral da secante é necessário usar um artifício.

Veja que podemos escrever:

\int \sec x \, dx = \int \frac{\sec x(\sec x + \,\textrm{tg}\,x)}{\sec x + \,\textrm{tg}\,x}\, dx = \int \frac{\sec^2 x +\sec x\,\textrm{tg}\,x}{\sec x + \,\textrm{tg}\,x}\, dx

Fazendo a substituição u = \sec x + \,\textrm{tg}\,x e du = \sec x \,\textrm{tg}\,x  + \sec^2 x \,dx , temos que:

\int \sec x \, dx = \int \frac{1}{u}\, du = \ln |u| + c = \ln |\sec x + \,\textrm{tg}\,x| + c .

Se desejar conhecer outro artifício que poderia ser usado, então veja o tópico abaixo:
[Cálculo] Integral da secante
viewtopic.php?f=120&t=5728
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Calcular Derivada ln(secx+tgx)

Mensagempor shantziu » Qua Set 07, 2011 17:01

Perfeito senhores, muito obrigado pela ajuda. :-D
shantziu
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Set 05, 2011 16:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.