• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE] infinito

[LIMITE] infinito

Mensagempor beel » Seg Set 05, 2011 12:37

[\lim_{x\rightarrow -\infty}(\pi\sqrt[]{3})/x^2

Nesse caso, eu teria que multiplicar numerador de denominador por \sqrt[]{3}?
Ou teria que dividir numerador e denominador por x², pela regra do polinomio?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] infinito

Mensagempor LuizAquino » Seg Set 05, 2011 12:39

isanobile escreveu:\lim_{x\rightarrow -\infty}(\pi\sqrt[]{3})/x^2

Nesse caso, eu teria que multiplicar numerador de denominador por \sqrt[]{3}?
Ou teria que dividir numerador e denominador por x², pela regra do polinomio?

Nenhuma das duas coisas!

Basta fazer:

\lim_{x\to -\infty} \frac{\pi\sqrt{3}}{x^2} = \pi\sqrt{3} \lim_{x\to -\infty} \frac{1}{x^2} = \pi\sqrt{3} \cdot 0 = 0
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [LIMITE] infinito

Mensagempor beel » Ter Set 06, 2011 11:55

Eu temia essa resposta...

Isso é pelo fato de \Pi\sqrt[]{3} ser uma constante?Assim,pelas propriedades dos limites, essa constante passa multiplicando o limite?
O zero vem de 1/-\infty?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] infinito

Mensagempor LuizAquino » Ter Set 06, 2011 17:42

isanobile escreveu:Isso é pelo fato de \pi\sqrt{3} ser uma constante? Assim,pelas propriedades dos limites, essa constante passa multiplicando o limite?

De fato, uma constante pode "sair do limite". Ou seja, temos que:

\lim_{x\to a} kf(x) = k \lim_{x\to a}f(x)


isanobile escreveu:O zero vem de 1/-\infty?

Sim. Mas vale um esclarecimento. Ao usar a simbologia 1/-\infty não se deve entender que é a "divisão" entre o número 1 e o "menos infinito". Isso não faria sentido! O que se deve entender é que há um limite do tipo \lim_{x\to a} \frac{1}{f(x)}, onde sabe-se que \lim_{x\to a} f(x) = -\infty .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [LIMITE] infinito

Mensagempor beel » Dom Out 16, 2011 16:57

Ok,obrigada.
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}