• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida no determinante

Duvida no determinante

Mensagempor Angelica Abdalla » Dom Set 04, 2011 23:09

A questão é a seguinte:
Verifcar geometricamente e ilustrar graficamente com exemplos as seguintes propriedades do determinante para matrizes
2 x 2 e 3 x 3:
(i) Se B é uma matriz obtida a partir de A multiplicando uma linha de A por um \alpha escalar > 0; então jdet(B)j = ®jdet(A)j
(ii) Se em uma matriz A uma linha pode ser escrita como uma combinação linear das outras, então det(A) = 0. (No caso 2x2 um vetor será múltiplo do outro. No caso 3 x 3, note que um vetor estará no plano gerado pelos outros dois, o que, visualmente, resultará em um sólido com volume igual a zero).
Resolução:
Definição: O determinante de uma matriz quadrada A=[a_ij ]é definido como:
det??A=?_p???(-1)?^J a_(1j_1 ) a_(2j_2 )…a_(nj_n ) ?,?
Onde J=J(j_1,j_2,…,j_n)é o número de inversões da permutação (j_1,j_2,…,j_n) e p indica que a soma ocorre sobre todas as permutações de (1,2,...,n) (existem n! permutações).
Podemos fazer as seguintes observações com relação a essa definição.
Obs.: (i) Em cada termo do somatório, existe um e apenas um elemento de cada linha e um, e apenas um, elemento de cada coluna da matriz:
(ii) O determinante também pode ser definido através da fórmula
det??A=?_p??(-1)^J a_(j_1 ) a_(j_2 )…a_(j_n n) ??
Propriedade 3) Se a linha de uma matriz é multiplicada por uma constante, o determinante fica multiplicado por esta constante.
Dem.: Segue-se imediatamente da observação (i).
Exemplo: |?(ka&kb@c&d)|=kad-kbc=k(ad-bc)=k|?(a&b@c&d)|
Ou Seja:
Se A=|?(1&2@3&4)|=4-6=-2
Sendo ?=2 o escalar escolhido para multiplicar a primeira linha de A formando assim a matriz:
B=|?(2.1&2.2@3&4)|8-12=-4
Como 2.(-2)=-4 fica provada a primeira propriedade.
ESTOU NO CAMINHO CERTO,
AGUARDO AJUDA OBRIGADA
Angelica Abdalla
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Jun 29, 2011 22:48
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}