• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema

Problema

Mensagempor Sergio Batista Lima » Dom Ago 28, 2011 13:59

Um prêmio de loteria foi dividido entre quatro amigos, da seguinte forma: Marcos ficou com um terço do prêmio; João levou um quarto; Daniel recebeu R$13.000,00; Aurélio levou um quinto do prêmio. Qual é o valor total desse prêmio?
Sergio Batista Lima
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Dom Ago 28, 2011 13:40
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Problema

Mensagempor Caradoc » Dom Ago 28, 2011 14:15

Chamando o prêmio de x e equacionando:

\frac{x}{3} + \frac{x}{4} + 13000 + \frac{x}{5} = x

fazendo o mmc de 3,4,5 = 60 e isolando o x:

13000 = x - \frac{(20 + 15 + 12)x}{60}

13000 = \frac{13x}{60}

x = 60000
Caradoc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qui Dez 16, 2010 17:17
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}