• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Soma dos números inteiros que satisfazem a inequação

Soma dos números inteiros que satisfazem a inequação

Mensagempor maria cleide » Sex Ago 26, 2011 22:54

Qual a soma dos números inteiros que satisfazem a inequação (4x-2)(4-x)$\geq$(x-4)^2
Resolvi desta forma:
16x-4x^2-8+2x$\geq$x^2-8x+16
-5x^2+26x-24$\geq$0


Usando Bhaskara:
x=\frac{-26\pm\sqrt{26^2-4(-5)(-24)}}{2(-5)}.
x=\frac{-26\pm\sqrt{676-480}}{-10}.
x=\frac{-26\pm14}{-10}.

X1=1,2
X2=4

Como o primeiro termo da função é negativo, a concavidade da parábola é voltada para baixo e todos os valores da função entre as raízes será positivo. Assim, a soma dos números inteiros que satisfazem a inequação dada é 2+3+4=9. Está certo? Existe alguma outra forma de resolver a inequação?
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: Soma dos números inteiros que satisfazem a inequação

Mensagempor Molina » Dom Ago 28, 2011 23:11

Boa noite.

Há um erro na passagem do termo -8x da direita para a esquerda. O certo seria:

16x-4x^2-8+2x \geq x^2-8x+16

-5x^2+24x-24 \geq 0


Agora é só prosseguir da mesma maneira :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.