• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[calculo II integral]

[calculo II integral]

Mensagempor paula luna » Seg Ago 22, 2011 21:52

- Substituiçao trigonometrica -

Olha nao to conseguindo achar a resposta certa para esta questao.

\int_{}^{}\frac{dx}{{x}^{2}\sqrt[2]{{x}^{2}-5}}

Bem eu fiz as devidas subsituiçoes, e resolvi como podem ver abaixo

substituiçoes:
\sqrt[2]{{x}^{2}-5} = \sqrt[2]{5}.tg(\theta)
x = \sqrt[2]{5}.sec(\theta)
dx = \sqrt[2]{5}.sec(\theta).tg(\theta).d\theta

Resoluçao:
\int_{}^{}\frac{\sqrt[2]{5}.sec(\theta).tg(\theta).d\theta}{5.{sec}^{2}(\theta).\sqrt[2]{5}.tg(\theta)} = \frac{1}{5}\int_{}^{}\frac{1}{sec(\theta)} = \frac{1}{5}sen(\theta) = \frac{\sqrt[2]{{x}^{2}-5}}{5}+ C

Resposta certa:
\frac{\sqrt[2]{{x}^{2}-5}}{5x}+ C

Ou seja, para resumir, da onde veio aquele x no denominador?
:y: :y: :y: :y:
paula luna
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Mai 05, 2011 21:56
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo II integral]

Mensagempor LuizAquino » Ter Ago 23, 2011 08:24

Você fez a substituição x = \sqrt{5} \sec \theta .

Desenvolvendo essa equação para aparecer o seno do ângulo, obtemos \textrm{sen}\,\theta = \frac{\sqrt{x^2-5}}{x} .

Você deve ter se atrapalhado nesse desenvolvimento. Envie a sua resolução dessa parte para que possamos identificar o problema.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [calculo II integral]

Mensagempor paula luna » Ter Ago 23, 2011 15:58

Nossa! Claro! pura desatençao... mas é perdoavel,, trigonometria por vezes torna-se uma coisa extremamente tediosa com suas inumeras formas de simplificar ( ou de dificultar ). Toda hora que acho uma resposta, tenho que fazer varias simplificaçoes para dai entao saber se esta ou nao certa. Mas chega a ser um passatempo bem ... divertido , "Aprecie com moderaçao" :-D

Obg todos que leram e ao Luiz que sempre responde nossas duvidas por mais "idiotas" que possam ser (parecer).

Obs.: Desculpa os erros de portugues, ha um motivo significante para escolher a area da eng. (nao que isso explique os erros *-) )
paula luna
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Mai 05, 2011 21:56
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo II integral]

Mensagempor LuizAquino » Ter Ago 23, 2011 19:11

paula luna escreveu:Desculpa os erros de portugues, ha um motivo significante para escolher a area da eng. (nao que isso explique os erros *-) )


Com certeza o fato de escolhermos a área de exatas não é desculpa para descuidar do Português.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}