• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como achar esse valor seno?

Como achar esse valor seno?

Mensagempor angsrom » Qua Ago 03, 2011 09:21

Olá! Bom eu estou com dúvida nessa parte da questão (FOTO) em como achar o sen pelo cos.
É dado essa informação:
se cos x = 1/3 então sen x = 2(raiz)2/3

Imagem

Como foi descoberto esse valor sen 2(raiz)2/3 somente com a ajuda do cos 1/3 e o lado 1?????

Tentei diferentes formas, mas somente achei o resultado 2/3 para o seno.
angsrom
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Mai 15, 2011 12:29
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Como achar esse valor seno?

Mensagempor Guill » Qua Ago 03, 2011 15:31

Devemos usar a Relação Fundamental da Trigonometria:

No triângulo retângulo:

H = Hipotelusa
Co = Cateto oposto ao ângulo \alpha
Ca = Cateto adjacente ao ângulo \alpha

\frac{Co}{H}=sen \alpha
\frac{Ca}{H}=cos \alpha


Pelo Teorema de Pitágoras:

H² = Co² + Ca²


Dividindo ambos os lados da equação por H²:

\frac{\left(Co^2+Ca^2 \right)}{H^2}=1

\frac{Co^2}{H^2}+\frac{Ca^2}{H^2}=1

\left(\frac{Co}{H} \right)^2+\left(\frac{Ca}{H} \right)^2=1

\left(sen\alpha \right)^2+\left(cos\alpha \right)^2=1


Agora basta substituir o valor na fórmula:

Se o cosseno é 1/3:


\left(sen\alpha \right)^2+\left(cos\alpha \right)^2=1

\left(sen\alpha \right)^2+\frac{1}{9}=1

\left(sen\alpha \right)^2=\frac{8}{9}

sen\alpha=\sqrt[]{\frac{8}{9}}

sen\alpha=\frac{\sqrt[]{8}}{3}

sen\alpha=\frac{2.\sqrt[]{2}}{3}
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Como achar esse valor seno?

Mensagempor supertag » Qui Ago 04, 2011 01:18

Uool! O processo para se obter a relação fundamental é bem manero.
Melhor ainda saber que é realmente possível achar esse 2(raiz)2/3.
Obrigado Guill pela ajuda!
supertag
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Jun 08, 2011 17:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D