por Claudin » Ter Ago 02, 2011 02:42
Não consigo resolver este exercício de limite de função composta.
![\lim_{x\rightarrow-1}\sqrt[3]{\frac{x^3+1}{x+1}} \lim_{x\rightarrow-1}\sqrt[3]{\frac{x^3+1}{x+1}}](/latexrender/pictures/cc40839f72d2793dffb732bc7d90e2ec.png)
Desculpe, coloquei um valor equivocado
a verdadeira expressão seria esta aqui em cima.
Obrigado
Editado pela última vez por
Claudin em Ter Ago 02, 2011 15:50, em um total de 1 vez.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por FilipeCaceres » Ter Ago 02, 2011 09:25
Olá Claudin,
Teste fazer usando o mesmo que foi feito
aquiAbraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por Claudin » Ter Ago 02, 2011 16:09
Já tentei de várias formas mas não consigo!
Tenho que começar assim?
![\lim_{x\rightarrow-1}\sqrt[3]{\frac{x^3+1}{x+1}}\Rightarrow\sqrt[3]{u} \lim_{x\rightarrow-1}\sqrt[3]{\frac{x^3+1}{x+1}}\Rightarrow\sqrt[3]{u}](/latexrender/pictures/1d6fc384bba699065097db3afcad1f9f.png)
onde

e

Mas não consigo a resposta correta!
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por FilipeCaceres » Ter Ago 02, 2011 16:46
Olá Claudin,
Para está questão basta fazer o seguinte,

Logo,
![\lim_{x\rightarrow-1}\sqrt[3]{\frac{x^3+1}{x+1}}=\lim_{x\rightarrow-1}\sqrt[3]{\frac{\cancel{(x+1)}(x^2-x+1)}{\cancel{(x+1)}}} \lim_{x\rightarrow-1}\sqrt[3]{\frac{x^3+1}{x+1}}=\lim_{x\rightarrow-1}\sqrt[3]{\frac{\cancel{(x+1)}(x^2-x+1)}{\cancel{(x+1)}}}](/latexrender/pictures/a1afda6e5652c34b733c478de353aa23.png)
, pois

.
Assim temos,
![\lim_{x\rightarrow-1}\sqrt[3]{x^2-x+1}=\sqrt[3]{(-1)^2+1+1}=\boxed{\sqrt[3]{3}} \lim_{x\rightarrow-1}\sqrt[3]{x^2-x+1}=\sqrt[3]{(-1)^2+1+1}=\boxed{\sqrt[3]{3}}](/latexrender/pictures/b6d2a507951a87622cfc7acfa9628ad4.png)
Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por Claudin » Ter Ago 02, 2011 17:25
Obrigado

"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Gráfico e limite para função maior inteiro
por Raphaela_sf » Qui Abr 05, 2012 19:26
- 1 Respostas
- 6478 Exibições
- Última mensagem por LuizAquino

Qui Abr 05, 2012 20:53
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4560 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 4853 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] limite trigonométrico quando x tende ao infinito
por Ge_dutra » Seg Jan 28, 2013 10:13
- 2 Respostas
- 7037 Exibições
- Última mensagem por Ge_dutra

Ter Jan 29, 2013 14:20
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções piso (maior inteiro)
por ViniciusAlmeida » Sáb Fev 14, 2015 10:09
- 2 Respostas
- 4269 Exibições
- Última mensagem por adauto martins

Qui Fev 19, 2015 15:01
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.