• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Análise Combinatória

Análise Combinatória

Mensagempor sileust » Dom Jul 10, 2011 13:01

Prezados participantes do fórum.

Antes de nada é um privilégio participar, pela primeira vez, deste ambiente!

Gostaria que alguém pudesse me ajudar com uma dúvida sobre o critério adotado na resolução de dois exemplos (resolvidos pelos autores) do livro Introdução à Análise Combinatória, de José Plínio O. Santos e outros, sobre princípio multiplicativo:

Exemplo 2.14 Há 12 moças e 10 rapazes, onde 5 deles (3 moças e 2 rapazes) são filhos da mesma mãe e os restantes não possuem parentesco. Quantos são os casamentos possíveis?

Resolução: considerando as moças (3) que possuem irmãos (2), há: 3.8 = 24 casamentos possíveis.
Considerando as moças (9) que não possuem irmãos, há: 9.10 = 90 casamentos possíveis. Portanto, há 24 + 90 = 14 casamentos possíveis.

Exemplo 2.27 De quantas maneiras 12 moças e 12 rapazes podem formar pares para uma dança?

Resolução: A primeira moça tem 12 possibilidades para escolher seu par. A segunda moça tem 11 possibilidades; a terceira moça tem 10 possibilidades, e assim sucessivamente, de modo que a décima segunda moça terá 1 possibilidade de escolha. Portanto, pelo princípio multiplicativo, podemos concluir que há 12. 11. 10. 9. 8. . . 1 = 12! Maneiras de esses pares serem formados.

Minha pergunta é a seguinte: por que, em ambos os casos, tratando-se de formação de pares (afinal o casamento se faz aos pares assim como as duplas de dança), apresentam maneiras distintas de se resolver? No primeiro caso, tomou-se o número do grupamento de moças disponíveis, em cada caso, e multiplicou-se pelo número do grupamento de rapazes, enquanto que, no segundo exemplo, se houvesse sido aplicado o mesmo critério, a solução teria sido 12 x 12 = 144. Se fizermos a árvore de probabilidade encontra-se este resultado. Acrescenta-se ainda que, no segundo caso, a ordem não interessa, então por que foi calculado como o fatorial (12!) do número de um dos grupamentos? Afinal de contas, para fins de contagem, o casal João e Maria é o mesmo Maria e João.

Grato,

Sílvio.
sileust
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Jul 10, 2011 12:54
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Análise Combinatória

Mensagempor my2009 » Sex Jul 29, 2011 13:41

Alguem pode nos ajudar ?
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.