• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Qui Jul 28, 2011 17:08

Livro Guidorizzi Vol 1

Página 85

Exercício 3

Dada a função f(x)=\frac{x^2-3x+2}{x-1}, verifique que \lim_{x\rightarrow1^{+}}f(x)=\lim_{x\rightarrow1^{-}}f(x). Pergunta-se: f é contínua em 1? Por Quê?

De acordo com meus cálculos encontrei \lim_{x\rightarrow1^{+}}f(x)=\lim_{x\rightarrow1^{-}}f(x)= -1

Ou seja, se os limites laterais pela esquerda e pela direita são iguais, determinei, que a função é contínua.

O que no gabarito esta dizendo o contrário.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Qui Jul 28, 2011 18:37

Claudin escreveu:De acordo com meus cálculos encontrei \lim_{x\rightarrow1^{+}}f(x)=\lim_{x\rightarrow1^{-}}f(x)= -1

Ou seja, se os limites laterais pela esquerda e pela direita são iguais, determinei, que a função é contínua.


Apenas ter limites laterais iguais quando x se aproxima de 1 não implica que a função seja contínua em 1. Basta você analisar a definição de função contínua para entender isso.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Qui Jul 28, 2011 19:49

LuizAquino escreveu:Apenas ter limites laterais iguais quando x se aproxima de 1 não implica que a função seja contínua em 1. Basta você analisar a definição de função contínua para entender isso.


Então para ser uma função contínua teria que ser assim:
\lim_{x\rightarrow1^{+}}f(x)=\lim_{x\rightarrow1^{-}}f(x)= 1

Correto?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Qui Jul 28, 2011 20:27

Claudin escreveu:Então para ser uma função contínua teria que ser assim:
\lim_{x\rightarrow1^{+}}f(x)=\lim_{x\rightarrow1^{-}}f(x)= 1
Correto?


Errado.

Conforme dito no outro tópico (Limite), a função f é contínua em 1 se acontecer que:

\lim_{x\to 1} f(x) = f(1)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Qui Jul 28, 2011 21:06

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Claudin » Sex Jul 29, 2011 02:04

Analisando novamente o exercício Luiz Aquino, observei que na função:

f(x)=\frac{x^2-3x+2}{x-1}

Aplicando o f(1) normalmente resultaria em uma indeterminação.
f(1)=\frac{x^2-3x+2}{x-1}= \frac{0}{0}

Mas o modo correto seria:

f(1)=\frac{x^2-3x+2}{x-1}\Rightarrow \frac{(x-1)(x-2)}{(x-1)}= \frac{(x-2)}{1}= -1

O que iria resultar em:

\lim_{x\rightarrow1^{+}}f(x)=\lim_{x\rightarrow1^{-}}f(x)=f(1)

Substituindo valores:

\lim_{x\rightarrow1^{+}}f(x)=\lim_{x\rightarrow1^{-}}f(x)=-1

Após calcular os limites laterais pela esquerda e pela direita obtive:

\lim_{x\rightarrow1^{+}}f(x)=-1 e \lim_{x\rightarrow1^{-}}f(x)=-1


Ou seja, seria uma expressão correta, utilizando f(1)=-1.

Poderia, explicar onde estou errando?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Claudin » Sex Jul 29, 2011 02:08

Com base nos cálculos acima posso afirmar que o limite existe.

\lim_{x\rightarrow1}\frac{x^2-3x+2}{x-1}= -1

E automaticamente, com base nos cálculos acima, também pensei que a função seria contínua. Detalhe onde eu errei e explique-me a resposta correta. Obrigado.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Sex Jul 29, 2011 09:29

Claudin escreveu:(...)

Mas o modo correto seria:

f(1)=\frac{x^2-3x+2}{x-1}\Rightarrow \frac{(x-1)(x-2)}{(x-1)}= \frac{(x-2)}{1}= -1

(...)

Poderia, explicar onde estou errando?


Exatamente nesse passo está o erro!

Só é possível simplificar os termos (x - 1) quando x for diferente de 1! Acontece que você simplificou esses termos e em seguida colocou x como 1.

Perceba que em outras palavras você está cometendo o seguinte erro: \frac{0\cdot (-1)}{0} = -1 .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Sex Jul 29, 2011 11:58

Mas se não for desse modo. Aplicando f(1) resultaria em uma indeterminação \frac{0}{0}

Isso que eu não compreendi, por isso fiz desse modo.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Sex Jul 29, 2011 12:16

Claudin escreveu:Mas se não for desse modo. Aplicando f(1) resultaria em uma indeterminação \frac{0}{0}


Você não pode calcular f(1), pois o domínio da função f é \mathbb{R}-\{1\} .

Ou seja, x = 1 não faz parte do domínio de f. Desse modo, f(1) não existe.

Essa função tem esse domínio devido a presença do termo (x - 1) no denominador.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Fabio Cabral » Sex Jul 29, 2011 12:20

Claudinho,

Analisando o limite da função em x=1

\lim_{x\rightarrow{1}^{+}}=\lim_{x\rightarrow{1}^{-}}

Porém, não existe f(1)

Sabendo disso, já podemos afirmar que há uma descontinuidade!
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: Limite

Mensagempor Claudin » Sex Jul 29, 2011 12:23

Compreendi Luiz e Fábio

Mas o fato de possuir limites laterais iguais não interfere na descontinuidade, certo?

Outra pergunta seria, então em questões de continuidade eu devo analisar primeiro se existe o ponto, certo?
Para depois analisar os limites laterais pela esquerda e pela direita?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Fabio Cabral » Sex Jul 29, 2011 12:25

Lembrando que para a função ser contínua, temos que ter as seguintes situações:

1) \exists f({x}_{0})

2) \exists \lim_{x\rightarrow{x}_{0}}f(x)

3) \lim_{x\rightarrow{x}_{0}}f(x)=f({x}_{0})
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: Limite

Mensagempor Claudin » Sex Jul 29, 2011 12:27

ok. :y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Fabio Cabral » Sex Jul 29, 2011 12:31

Claudin escreveu:Compreendi Luiz e Fábio

Mas o fato de possuir limites laterais iguais não interfere na descontinuidade, certo?



Intefere. Se os limites laterais existirem e forem iguais, a função tera descontinuidade removível.
Caso contrário, será essencial!
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: Limite

Mensagempor Claudin » Sáb Jul 30, 2011 03:53

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: