por Joan » Sáb Jul 23, 2011 12:06

No conjunto R dos numeros reais, qual será o conjunto solução da equação:
![\frac{\sqrt[]{3}}{x²-1} = \frac{\sqrt[]{3}}{2x-2} - \frac{\sqrt[]{3}}{2x+2} ? \frac{\sqrt[]{3}}{x²-1} = \frac{\sqrt[]{3}}{2x-2} - \frac{\sqrt[]{3}}{2x+2} ?](/latexrender/pictures/3d7ba65e61b507b72abd4a870ec072d4.png)
Ai eu fui resolvendo da seguinte maneira:
![\frac{\sqrt[]{3}}{(x-1)(x+1)} = \frac{\sqrt[]{3}}{2(x-1)} - \frac{\sqrt[]{3}}{2(x+1)} \frac{\sqrt[]{3}}{(x-1)(x+1)} = \frac{\sqrt[]{3}}{2(x-1)} - \frac{\sqrt[]{3}}{2(x+1)}](/latexrender/pictures/2fe44ab138897da03562555542037d99.png)
Tendo o MMC = 2(x+1)(x-1), peguei dividi pelo denominador, e fui multiplicar pelos numeradores que são raizes de três, e eu nao sei como fazer de agora em diante....
desde já grato....
obs: esse "Â" no primeiro termo nao existe nem sei pq saiu...
-
Joan
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Sex Jul 22, 2011 18:07
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por LuizAquino » Sáb Jul 23, 2011 13:03
Temos a equação:

Note que x não pode ser 1 e nem -1, pois caso contrário ocorreria divisões por zero.
Podemos reescrever essa equação como:

Dividindo toda essa equação por

, ficamos com:

Agora, multiplicando toda essa equação por

, ficamos com:

A partir daí tente terminar de resolver o exercício.
ObservaçãoJoan escreveu:obs: esse "Â" no primeiro termo nao existe nem sei pq saiu...
Isso apareceu pois no ambiente LaTeX você usou o atalho do teclado para escrever o símbolo "²". O correto é usar o seguinte comando:
- Código: Selecionar todos
[tex]x^2[/tex]
O resultado desse comando é:

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Joan » Sáb Jul 23, 2011 13:21
Obrigado vou tentar resolver aki... vlw mesmo...
Consegui, obrigado, muito obrigado...
-
Joan
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Sex Jul 22, 2011 18:07
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [triângulo equilátero] Questão Colégio Naval 2010
por Joan » Sex Jul 22, 2011 18:42
- 3 Respostas
- 3578 Exibições
- Última mensagem por Joan

Sáb Jul 23, 2011 11:34
Geometria Plana
-
- MMC e MDC - Colégio Naval
por igorcamilo » Sáb Jun 25, 2011 21:22
- 1 Respostas
- 1932 Exibições
- Última mensagem por FilipeCaceres

Dom Jun 26, 2011 16:13
Álgebra Elementar
-
- Colégio Naval
por Joan » Seg Jul 25, 2011 16:38
- 8 Respostas
- 8053 Exibições
- Última mensagem por LuizAquino

Ter Jul 26, 2011 21:35
Álgebra Elementar
-
- Divisibilidade - Colégio naval
por igorcamilo » Sex Jun 24, 2011 19:22
- 2 Respostas
- 2335 Exibições
- Última mensagem por igorcamilo

Sex Jun 24, 2011 20:32
Álgebra Elementar
-
- Colégio Naval - Aritmética dos inteiros
por eliky » Sex Mai 17, 2013 01:16
- 1 Respostas
- 2251 Exibições
- Última mensagem por DanielFerreira

Dom Mai 19, 2013 20:40
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.