• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral - Cálculo de áreas

Integral - Cálculo de áreas

Mensagempor pinkfluor » Qui Jul 21, 2011 11:38

CONCURSO PETROBRAS 2011:

O grafico abaixo mostra,parcialmente, o grafico da funcao f(x), definida por f(x)= (3x^2)/ (x³+1)
Qual o valor da area limitada pela curva do grafico f, pelo eixo das abscissas e pelas retas x=1 e x=3?
PS. A figura do grafico mostra que a funcao f(x) é positiva no intervalo [1,3].

Gabarito: ln(14)
pinkfluor
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Mar 01, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: formado

Re: Integral - Cálculo de áreas/ FRACOES PARCIAIS

Mensagempor pinkfluor » Qui Jul 21, 2011 11:43

pinkfluor escreveu:CONCURSO PETROBRAS 2011:

O grafico abaixo mostra,parcialmente, o grafico da funcao f(x), definida por f(x)= (3x^2)/ (x³+1)
Qual o valor da area limitada pela curva do grafico f, pelo eixo das abscissas e pelas retas x=1 e x=3?
PS. A figura do grafico mostra que a funcao f(x) é positiva no intervalo [1,3].

Gabarito: ln(14)



Entao:

A = integral f(x) dx

Mas pra integrar essa funcao, tenho que fazer fracoes parciais, mas nao tou conseguindo fatorar o denominador (x³+1).
Sabemos que (x³+1) = (x +1)*(x2 - x +1), mas se fatorar essa equacao do segundo grau, nao ha raizes reais...

Alguem sabe???
Obrigada!
pinkfluor
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Mar 01, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: formado

Re: Integral - Cálculo de áreas

Mensagempor MarceloFantini » Qui Jul 21, 2011 14:32

Não é necessário fazer frações parciais. Faça a substituição u=x^3 +1 \Rightarrow \tm{d} u = 3x^2 \, \tm{d} x, e portanto a integral será \int \frac{3x^2}{x^3 +1} \, \tm{d} x = \int \frac{\tm{d} u}{u}, basta colocar os limites de integração. Note que quando fazemos mudança de variável é necessário alterar os limites para que o valor final não se altere.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integral - Cálculo de áreas

Mensagempor pinkfluor » Qui Jul 21, 2011 17:21

MarceloFantini escreveu:Não é necessário fazer frações parciais. Faça a substituição u=x^3 +1 \Rightarrow \tm{d} u = 3x^2 \, \tm{d} x, e portanto a integral será \int \frac{3x^2}{x^3 +1} \, \tm{d} x = \int \frac{\tm{d} u}{u}, basta colocar os limites de integração. Note que quando fazemos mudança de variável é necessário alterar os limites para que o valor final não se altere.



Nossaaa!!nao "enxerguei" que saia por susbstituicao de jeito nenhum...brigadao mesmoooooo!!
sds
pinkfluor
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Mar 01, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 15 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: