• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Qua Jul 20, 2011 19:42

Não consegui chegar ao resultado correto resolvendo o limite normalmente.
Somente utilizando a regra de L'Hospital.

\lim_{x\rightarrow2}\frac{x^3-5x^2+8x-4}{x^4-5x-6}
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Claudin » Qua Jul 20, 2011 19:42

O problema em resolver o limite normalmente foi eu não conseguir encontrar as raízes dos polinômios no contexto. Achei somente que 2 é raiz.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor giulioaltoe » Qua Jul 20, 2011 19:54

tenta pelo metodo de ruffini!!
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Limite

Mensagempor giulioaltoe » Qua Jul 20, 2011 20:10

ache as raizes do denominador primeiro, pelo metodo de ruffini, e depois vai jogando as mesmas raizes no numerador que provavelmente alguma vai ser igual!
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Limite

Mensagempor Claudin » Qui Jul 21, 2011 02:08

Eu tentei Briot Ruffini, mas não estou encontrando um resultado plausível da fatoração. Me parece que o 2 e o 1 é raiz, mas não consegui fatorar corretamente.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor MarceloFantini » Qui Jul 21, 2011 03:06

2 é raíz em ambos, portanto use o dispositivo de Briot Ruffini em ambos e você encontrará um polinômio do segundo grau no numerador e terceiro grau no denominador. Perceba que na hora de usar o dispositivo no denominador o coeficiente de x^3 e x^2 são zero.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite

Mensagempor Claudin » Qui Jul 21, 2011 19:47

Então a resolução seria:

\lim_{x\rightarrow2}\frac{(x^3-5x^2+8x-4)}{(x^4-5x-6)}

\lim_{x\rightarrow2}\frac{(x-1)(x-2)(x-2)}{(x^2+x+3)(x-2)(x+1)}

\lim_{x\rightarrow2}\frac{(x-1)(x-2)}{(x^2+x+3)(x+1)}\Rightarrow \frac{(2-1)(2-2)}{(2^2+2+3)(2+1)}\Rightarrow\frac{0}{27}=0
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor giulioaltoe » Qui Jul 21, 2011 19:53

se todas as suas contas estao corretas, essa e a resposta, pois o objetivo da simplificação é tirar a indeterminação do denominador! e este foi feito!
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Limite

Mensagempor Claudin » Qui Jul 21, 2011 20:30

Acho que está correto. O gabarito foi compátivel. :y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor giulioaltoe » Qui Jul 21, 2011 20:50

.
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.